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Abstract 

This paper describes work in which we go 

beyond conventional discrete 

representations of graphemes and 

phonemes in TTS training and instead use 

continuous feature value vectors as inputs 

for neural text-to-speech (TTS) synthesis. 

The two studies described demonstrate the 

potential of continuous features in 

controlling various phonetic-phonological 

aspects of synthetic speech. The first study 

introduces a continuous language feature to 

modulate the degree of English-

accentedness in Swedish speech synthesis. 

The second study employs continuous 

phonological features to represent 

American English speech sounds. Our 

findings indicate that continuous feature 

representations can enhance the flexibility 

of neural TTS systems, with potential 

applications in multilingual speech 

synthesis, accented speech generation, and 

synthesis for under-resourced languages. In 

other words, the work paves the way for 

more versatile TTS systems as well as 

improved opportunities for research based 

on analysis-through-synthesis. 

1 Introduction 

Input to neural TTS (text-to-speech synthesis) 

typically consists of discrete grapheme or phoneme 

representations of the text. While graphemes are 

common in the TTS research community, where 

the goal often is to try out new machine learning 

approaches, industrial approaches often use 

phoneme input to ensure better control over the 

wording and pronunciation (see e.g. Acapela 

Group, 2005; CereProc Ltd, 2023; Google, 2023; 

Microsoft, 2022). 

Several studies have explored the consequences 

of using graphemes, phonemes (e.g. Fong et al., 

2019; Taylor et al., 2021), or even 

 

phonological features as input to neural TTS (e.g. 

Staib et al., 2020; Maniati et al., 2021). In this 

work, we take the feature approach one step further, 

and use continuous features vectors, each feature 

holding a value between 0.0 and 1.0. As a result, 

we can assign intermediate values to achieve more 

fine-grained, gradual control over the feature. For 

example, a nasality feature, which in traditional 

theory is a binary feature and takes the values + or 

-, can here take any value between 0.0 and 1.0. In a 

study using the OverFlow voice presented below, 

this nasality feature was successfully varied over 

full utterances (Näslund et al., 2024).  

Here, we present two previously published 

studies in which we successfully control features 

by degree in neural TTS. The first study concerns a 

continuous language feature, making it possible to 

synthesise Swedish with an increasing degree of 

English-accentedness  (Tånnander et al., 2024a). 

During training, Swedish phonemes were assigned 

a language feature value of 0.0 (no accent) and 

English phonemes were assigned 1.0 (full English 

accent). The test data was then synthesised using 

intermediate accent values. 

 The second study used 11 continuous 

phonological features to represent American 

English. Here, some of the features also involved 

intermediate values in training, as well as during 

inference. Two features were evaluated with 

categorical perception tests and acoustic analyses 

(Tånnander et al., 2024b). 

2 Method 

Continuous feature values ranging from 0.0 to 1.0 

were used in both studies. Note that the feature 

values do not represent absolute values but should 

be regarded as rank orders. For example, a nasality 

value of 0.25 does not correspond to 25 % nasality 

but is expected to be more nasal than 0.0 and less 

nasal than 0.5 
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2.1 Continuous language feature 

A continuous language feature representing 

different degrees of English-accentedness in 

Swedish was introduced. For further details about 

the study, see Tånnander et al. (2024a). 

TTS framework: The voice was trained using 

OverFlow (Mehta et al., 2023). Hifi-GAN (Kong et 

al., 2020) was used as vocoder. 

Training: Around 12 000 Swedish and 8 000 

English sentences read by the same professional 

Swedish, female speaker (Tånnander, 2018). The 

language feature was set to 0.0 for Swedish and to 

1.0 for English speech sounds. 

Test data: The Swedish translation of The North 

wind and the sun (‘Swedish Phonology’, 2023) and 

four constructed Swedish sentences were used as 

test data. Five degrees of the language feature 

(referred to as TEA, Targeted English-

Accentedness) were evaluated, the extremes 0.0 

and 1.0,  which were expected to produce Swedish 

without any accent and with full English accent, as 

well as three intermediate values (Figure 1). 

 
Test procedure: Speech intelligibility was 

evaluated using the output word error rates (WER) 

from the speech recognition module of Whisper  

(Radford et al., 2022). 

English-accentedness was evaluated 

automatically and through a perception test. The 

automatic verification used Whisper’s language 

classification module, where the probability of the 

speech being English was hypothesised to increase 

with higher targeted degrees of English-

accentedness. In the perception test, 20 subjects 

listened to sentence pairs with different degrees of 

English-accentedness and selected the most 

English-accented rendition. 

In addition, durational and F0 analyses using 

REAPER (REAPER, 2014/2023) aimed to explore 

differences between non-accented and English-

accented phoneme durations. 

2.2 Continuous phonological features 

Each speech sound was represented by a vector of 

11 continuous feature values. Similar to the 

language feature in the previous study, each feature 

took any value between 0.0 and 1.0, but in this case, 

intermediate values were also used for 

phonological features during training. The study is 

described in more detail in Tånnander, et al. 

(2024b).  

TTS framework: The voice was trained using 

Matcha-TTS (Mehta et al., 2024). Hifi-GAN 

(Kong et al., 2020) was used as vocoder. 

Training: The training data consisted of an 

American English speech database:  RyanSpeech, 

with almost 10 000 American English sentences 

(Zandie et al., 2021). 11 phonological features were 

used. 5 were assigned 0.0 or 1.0 values only (e.g. 

VOICING), while 6 also included intermediate 

values during training (e.g. vowel tongue positions 

and consonant stricture. The evaluation concerns 

the two features discussed in more detail here:  

C-PLACE and V-HEIGHT. C-PLACE is related to the 

place of articulation, with glottal at the lower and 

bilabial at the higher end of the continuum (see 

Table 1). As mentioned above, the intermediate 

numbers should be interpreted as rank orders rather 

than exact positions. They do not correspond to for 

example physical distances in the vocal tract; (2) 

velar is just closer to the beginning of the 

continuum than (4) post-alveolar is. Similarly, 

V-HEIGHT shows the relative vertical position of 

the tongue; a low V-HEIGHT value shows a vowel 

that is more open than a higher value. Figure 2 uses 

the phoneme /ɛ/ to illustrate the association with 

traditional, binary phonological features. 

 

 

Figure 1. The five degrees of English-

accentedness used in the test stimuli. 

R C-PLACE  Example V-HEIGHT  Example 

1 glottal /h/ most open /æ/ 

2 velar /k/  /ɛ/ 

3 palatal /j/  /ɜː/ 

4 post-alveolar /ʃ/  /ɪ/ 

5 alveolar /t/  /ʊ/ 

6 dental /θ/ most close /iː/ 

7 labiodental /f/   

8 bilabial /p/   

Table 1:  The training rank order (R) of C-PLACE 

and V-HEIGHT, mapped to place of articulation 

and relative vowel height. 

 

 

 
Figure 2: Excerpts of binary phonological 

features and continuous features of /ɛ/.  
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Test data: Stimuli where only one focus feature 

was altered involved nasals and voiceless stops on 

the C-PLACE continuum and front vowels on the 

V-HEIGHT continuum. The target words were 

embedded in the carrier sentence I say 

<target_word> again. Listen to the test stimuli at 

https://www.speech.kth.se/tts-demos/ 

interspeech24phonological/. 

 

Test procedure: To verify that the features 

could be controlled by degree, categorical 

perception tests and acoustic analyses were 

performed. In the categorical perception tests, 120 

subjects marked whether they perceived wim, win 

or wing for stimuli with a nasal at 9 different 

locations on the C-PLACE continuum; pen, ten or 

ken were used as corresponding voiceless stops; 

and bit, bet and bat for the front vowels at 9 

different locations on the V-HEIGHT continuum. 

The acoustic analyses concerned F1 values for the 

V-HEIGHT altered vowels, where F1 is expected to 

increase with lower rank order (more open vowel). 

For C-PLACE,  the F2 slope over around 50 ms 

transitions between target consonants and vowels 

was measured. The F2 transition is expected to rise 

when /ɛ/ follows a bilabial phoneme, to be at level 

after alveolars, and to fall after velars. These 

expectations are illustrated in Figure 3.  

3 Results 

3.1 Continuous language feature 

The speech intelligibility Whisper test showed a 

WER starting at under 10% at 0.0, and then slightly 

increasing with higher TEA (Targeted English-

Accentedness, see Figure 4). Whisper’s language 

classifier resulted in probabilities over 99% for 

Swedish at 0.0-0.50, and English probabilities 

increasing with higher TEA, although the speech 

was correctly identified as Swedish also at a TEA 

of 1.0 (p=>0.96). 

The pairwise perception test, where one 

utterance always had a higher intended TEA than 

the other, showed that the listeners selected the 

utterance with the highest TEA in 89% of the cases. 

These results show that the synthesised speech is 

intelligible, and that he intended degree of English-

accentedness was achieved. 

Durational measurements showed a strong 

correlation between Swedish/English recorded 

sentences and the synthesised test material, with 

shorter vowel durations in English and English-

accented speech as its main finding. Finally, f0 in 

English-accented synthesised speech was generally 

lower than in non-accented sentences. 

3.2 Continuous phonological features 

The categorical perception test, where subjects 

listened to 9 degrees of C-PLACE or V-HEIGHT and 

selected which of three words they perceived, 

showed that they chose the option closest to the 

targeted feature. Figure 5 illustrates the perceptual 

categorizations as /k/, /t/ or /p/ for the 9 tested 

values of C-PLACE. We see that the black F2 and 

orange F3 arrows approximately correspond to the 

expected slopes of the formant transitions shown in 

Figure 3. 

 

 

Figure 5: Count of perception of /p, t, k/  

(y-axis) for 9 stimuli (x-axis) of C-PLACE 

stops before vowel. Black arrows illustrate F2 

slope and orange arrows F3 slope. 
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Figure 3: Left: the relation between F1 and vowel 

height. Right: expected F1-F3 slopes when /ɛ/ 

follows a bilabial, alveolar or velar stop. 

 

Figure 4: Left: WER for varying TEA. Right: 

Estimated probability of Swedish (lower) and 

English (upper) (truncated x axis). s0 

represents 0% TEA, and s100 100% TEA. 
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The V-HEIGHT perception test showed similar 

tendencies; the closest vowel option was generally 

chosen, although there was some confusion at rank 

order (4), as shown in Figure 6. The average F1 

values are here shown as black dots. 

4 Discussion 

The experiments showed that representing 

phonological features as continua in the training 

enables more refined control over the speech 

generation compared to traditional discrete 

features. When using the same targets as were used 

in training for generation, we could hear no 

noticeable loss of quality compared to discrete 

features. 

The continuous language feature investigated in 

the first study controls the degree of English-

accentedness in synthesised Swedish speech, with 

applications ranging from speech science (with 

more thorough validation, the synthesised speech 

could be used as material for analyses of English-

accentedness), to better renditions of for example 

new loan words, English names, and English 

embedded phonemes in general. The approach 

successfully produced variations ranging from no 

accent to a fairly full English accent, with 

intermediate levels effectively perceived as such, 

both by automatic systems and human listeners. 

The continuous phonological features 

representing American English speech sounds in 

the second experiment gave the ability to produce 

smooth transitions and gradual changes in speech 

sounds, validated in categorical perception tests 

and acoustic analyses. 

We conclude that continuous feature 

representations  provide a flexible framework for 

capturing the subtle gradations of speech sounds. 

This flexibility is particularly beneficial for tasks 

that require nuanced control over speech output, 

such as generating accented speech or blending 

features from different languages.  

These findings open promising avenues for 

future speech science, both fundamental and 

applied. One significant area is the development of 

multilingual and accented speech synthesis 

systems capable of code switching both within and 

between utterances. TTS systems driven by 

continuous features can more seamlessly switch 

between languages and accents, providing a more 

realistic and cohesive user experience. This 

approach also holds potential for the customisation 

and personalisation of TTS voices, allowing end 

users and developers to adjust speech 

characteristics according to their preferences. 

Furthermore, continuous feature vectors could be 

particularly beneficial for synthesising speech in 

under-resourced languages, where traditional 

phonological data may be limited. By leveraging 

the flexibility of continuous features, researchers 

can create more robust TTS models that perform 

well even with sparse data. 

As a brief aside, we note that the representation 

used here differs from other approaches with 

similar goals, for example style tokens, in that it 

operates on the phone level, and takes phonetic-

phonologically sound assumptions as its starting 

point. We believe this to be an advantage or 

possibly a requirement if the resulting synthesis is 

to help shed light on fundamental phonetic-

phonological questions. 
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Figure 6: Counts of perception of /ɪ , ɛ, æ/ (left 

y-axis) for each of the 9 settings (x-axis) of 

V-HEIGHT.  Training target phonemes labels 

are aligned with their rank order. Average F1 

value is shown as black dots (right y-axis). 

 

 



5 

 
 

 

References 

Acapela Group. (2005). Language manual, Swedish. 

http://www.acapela-

vaas.com/Includes/language_manuals/Swedish.pdf 

CereProc Ltd. (2023). CereVoice phone sets. 

Fong, J., Taylor, J., Richmond, K., & King, S. (2019). 

A comparison of letters and phones as input to 

sequence-to-sequence models for speech synthesis. 

Proc. of SSW 10, 223–227. 

https://doi.org/10.21437/SSW.2019-40 

Google. (2023). Supported phonemes and levels of 

stress | Cloud Text-to-Speech Documentation. 

Google Cloud. https://cloud.google.com/text-to-

speech/docs/phonemes 

Kong, J., Kim, J., & Bae, J. (2020). HiFi-GAN: 

Generative adversarial networks for efficient and 

high fidelity speech synthesis. In Procs. of NeurIPS 

2020, 33, 17022–17033. 

https://proceedings.neurips.cc/paper/2020/hash/c5d

736809766d46260d816d8dbc9eb44-Abstract.html 

Maniati, G., Ellinas, N., Markopoulos, K., 

Vamvoukakis, G., Sung, J. S., Park, H., 

Chalamandaris, A., & Tsiakoulis, P. (2021). Cross-

lingual low resource speaker adaptation using 

phonological features. Interspeech 2021, 1594–

1598. https://doi.org/10.21437/Interspeech.2021-

327 

Mehta, S., Kirkland, A., Lameris, H., Beskow, J., 

Székely, É., & Henter, G. E. (2023). OverFlow: 

Putting flows on top of neural transducers for better 

TTS. Interspeech 2023, 4279–4283. 

https://doi.org/10.21437/Interspeech.2023-1996 

Mehta, S., Tu, R., Beskow, J., Székely, É., & Henter, 

G. E. (2024). Matcha-TTS: A fast TTS architecture 

with conditional flow matching. Accepted to 

ICASSP 2024. ICASSP 2024, Seoul, South Korea. 

https://doi.org/10.1109/ICASSP48485.2024.10448

291 

Microsoft. (2022). SSML phonetic alphabets. 

https://learn.microsoft.com/en-us/azure/cognitive-

services/speech-service/speech-ssml-phonetic-sets 

Näslund, A., Tånnander, C., Strömbergsson, S., & 

Włodarczak, M. (2024). Simulating hypernasality 

with phonological features in Swedish TTS., 

Proceedings from FONETIK 2024 (pp. 81–88). 

Stockholm University. 

https://doi.org/10.5281/zenodo.11396084

 

Radford, A., Kim, J. W., Xu, T., Brockman, G., 

McLeavey, C., & Sutskever, I. (2022). Robust 

speech recognition via large-scale weak 

supervision. 

https://doi.org/10.48550/ARXIV.2212.04356 

REAPER: Robust Epoch And Pitch EstimatoR. (2023). 

[C++]. Google. 

https://github.com/google/REAPER (Original work 

published 2014) 

Staib, M., Teh, T. H., Torresquintero, A., Mohan, D. S. 

R., Foglianti, L., Lenain, R., & Gao, J. (2020). 

Phonological features for 0-shot multilingual speech 

synthesis. Proc. of Interspeech 2020, 2942–2946. 

https://doi.org/10.21437/Interspeech.2020-1821 

Swedish phonology. (2023). In Wikipedia. 

https://en.wikipedia.org/w/index.php?title=Swedis

h_phonology&oldid=1182856646 

Tånnander, C. (2018). Speech synthesis and evaluation 

at MTM. Proc. of Fonetik 2018, 75–80. 

Tånnander, C., O’Regan, J., House, D., Edlund, J., & 

Beskow, J. (2024a). Prosodic characteristics of 

English-accented Swedish neural TTS. Proc. of 

Speech Prosody 2024. Speech Prosody 2024, 

Leiden, the Netherlands. 

https://doi.org/10.21437/SpeechProsody.2024-209 

Tånnander, C., Mehta, S., Beskow, J., & Edlund, J. 

(2024b). Beyond graphemes and phonemes: 

Continuous phonological features in neural text-to-

speech synthesis. Interspeech 2024, 2815–2819. 

https://doi.org/10.21437/Interspeech.2024-1565 

Taylor, J., Maguer, S. L., & Richmond, K. (2021). 

Liaison and pronunciation learning in end-to-end 

text-to-speech in French. Proc. of SSW 11, 195–

199. https://doi.org/10.21437/SSW.2021-34 

Zandie, R., Mahoor, M. H., Madsen, J., & Emamian, E. 

S. (2021). RyanSpeech: A corpus for conversational 

text-to-speech synthesis. Interspeech 2021, 2751–

2755. https://doi.org/10.21437/Interspeech.2021-

341 

 

 


