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Abstract

Personally Identifiable Information (PII) is per-
vasive in linguistic data, making open sharing
thereof complicated from both the legal and
ethical perspective. Simply redacting out the
PIIs or replacing them with pseudonyms pre-
supposes a detection step, where the personal
information is identified. In this study, we ex-
pand the existing research on PII detection in
unstructured data (learner essays) in Swedish,
testing more Large Language Models (LLMs)
on a larger amount of data. We compare three
different LLMs, two Swedish (KB-BERT and
AI Sweden’s RoBERTa) and one multilingual
(M-BERT). We found that KB-BERT tends to
be better than the other models but that there is
some overlap in their performance.

1 Introduction

A non-negligible portion of texts that could be used
in research or for training language models con-
tains Personally Identifiable Information (PIIs), i.e.
elements that could lead to the reidentification of
the data subject. As such, they are protected by
various regulations; in the EU, the GDPR governs
the usage and sharing of such data (Official Journal
of the European Union, 2016). Being able to elimi-
nate PIIs from the text enables the sharing of not
only corpora intended for linguistic research or lan-
guage model training, but also collections of texts
relevant for research in broadly understood digital
humanities or fields related to law and medicine.

For example, essays written by language learners
often contain PIIs, as the students are commonly
prompted to talk about themselves or their experi-
ences, limiting the texts’ shareability without any
privacy-protecting measures in place. This can be
an issue as this kind of data is essential in language
acquisition research (e.g. Golden et al., 2017),
for developing essay grading (e.g. Beigman Kle-
banov and Madnani, 2020; Wilkens et al., 2023;

Lagutina et al., 2023), or grammatical error detec-
tion tools (e.g. Bryant et al., 2023; Grundkiewicz
and Junczys-Dowmunt, 2019). There is, therefore,
a strong need for protecting author identities in this
specific domain, as has been underlined by Stemle
et al. (2019).

The two most common ways of handling the
presence of PIIs in the text are anonymization
and pseudonymization. Lison et al. (2021) define
the former as the “[c]omplete and irreversible re-
moval from a dataset of any information that, di-
rectly or indirectly, may lead to a subject’s data
being identified," whereas the latter, according to
them, consists of replacing direct identifiers with
pseudonyms and retaining the mapping separately.
Other researchers choose not to limit it to direct
identifiers (Volodina et al., 2020). What connects
both of these procedures is the step in which the
personal elements are identified, which is why de-
veloping robust methods for PII identification is
extremely relevant for both of these applications.

Our experiment is an extension of the one con-
ducted by Szawerna et al. (2024) and is therefore
also inspired by the work done by Grancharova
and Dalianis (2021), where the ability of various
Large Language Models (LLMs) to detect personal
information in Swedish texts was tested. We set
out to test the capabilities of three different LLMs,
namely KB-BERT (Malmsten et al., 2020), AI Swe-
den’s RoBERTa (AI Sweden), and Multilingual
BERT (Devlin et al., 2018) and two versions of
cross entropy loss: weighted and not weighted
(Ansel et al., 2024). We use SweLL-pilot and
SweLL-gold, corpora of essays written by learners
of Swedish as a second language which contain
PIIs, the presence of which has been manually an-
notated (Volodina et al., 2016; Wirén et al., 2018;
Volodina et al., 2019).

While Szawerna et al. (2024) have already
shown that LLMs can learn to simply distinguish
between PIIs and other kinds of tokens, what we



want to test in our version of this experiment is a)
whether AI Sweden’s RoBERTa performs better
than the models tested by Szawerna et al. (2024)
and b) if the performance changes noticeably with
the improvements to the pre-processing and the
addition of more training data.

2 Prior Research

While a lot of work on PII detection has already
been conducted, much of it focuses on English and
normative text, with the genres likely to include e.g.
misspellings or nonstandard variation being under-
represented, and the bulk of the pseudonymization
and anonymization efforts being focused on medi-
cal and legal data (Lison et al., 2021).

When it comes to Swedish, a significant amount
of work was done on medical data, including using
rule-based approaches, machine learning, and fine-
tuning LLMs for the task (Dalianis, 2019; Berg
et al., 2019; Berg and Dalianis, 2019, 2021; Gran-
charova and Dalianis, 2021). Many valuable in-
sights pertaining to the handling of PIIs also stem
from the creation of the SweLL corpus, where both
manual and automatized, rule-based methods were
used to detect and replace personal information
(Volodina et al., 2020). The data from a pilot ver-
sion of this corpus was further utilized by Szawerna
et al. (2024) to fine-tune and test several models.

Since the goal of this experiment is to test the
performance of an array of fine-tuned LLMs on
PII detection, it is worth reviewing the results re-
ported by Grancharova and Dalianis (2021) and
Szawerna et al. (2024). Grancharova and Dalianis
(2021)’s best performing model (KB-BERT fine-
tuned on original, in-domain data) reaches 0.923
precision, 0.922 recall, and 0.922 F1 on the task of
PII detection in the medical domain. In Szawerna
et al. (2024), KB-BERT is also the basis for the best
performing models; here, however, its versions fine-
tuned with and without a weighted loss function ex-
cel at different aspects of the task in learner-written
texts. The model without a weighted loss function
has the highest precision (0.875) and F1 (0.803),
whereas the one with a weighted loss function has
the highest recall (0.902).

3 Materials and Methods

The setup of this experiment follows closely the
one of Szawerna et al. (2024), albeit with a num-
ber of significant changes. While they originally
used only the SweLL-pilot corpus (Volodina et al.,

2016), we also include the SweLL-gold corpus1

(Volodina et al., 2019; Wirén et al., 2018). This has
doubled the number of essays and nearly tripled
the instances of PIIs, as seen in Table 12. The data
in both of the aforementioned corpora consists of
essays written by learners of Swedish as a second
language, of varying levels of proficiency, but also
varied in terms of topic or genre. Following the
original experiment, we disregard the detailed PII
type annotation, focusing only on whether a token
belongs to a PII passage or not, and assigning the
appropriate inside-outside-beginning (IOB) tag. It
is important to note that the annotation of personal
information in the two SweLL corpora was con-
ducted by different people, though they did follow
the same guidelines (Megyesi et al., 2021).

SweLL-pilot
SweLL-pilot +
SweLL-gold

B 1142 3111
I 86 237

Table 1: The counts of the instances of B and I PII
classes in Szawerna et al. (2024) and in our experiment.

The two major improvements relative to the
original experiment concern the preprocessing of
the samples. During their construction, we pre-
tokenize them using the respective LLM’s tokenizer
in order to be able to obtain samples with as much
context as possible, i.e. as close to 512 sub-word
tokens as possible without the sample ending in
the middle of a word (whereas previously samples
had the maximum length of 100 tokens). Since
this is dependent on the LLM tokenizer used, the
number of non-PII tokens varies between models
(see Table 4, Table 5, Table 6 in Appendix A). The
samples obtained from the same essay are bound
to be in the same data split.

We ensure that an equal number of samples that
include personal information and ones that do not
do that are included in our data splits. We calcu-
late the class weights using Scikit-learn (Pedregosa
et al., 2011). The exact class counts, proportions,
and weights are provided in Appendix A. In the fi-
nal step of the pre-processing, we perform a 5-fold
cross-validation in order to obtain a better overview
of their performance.

1SweLL-gold was originally pseudonymized, we reintro-
duced the PIIs into the texts in order to use this corpus in our
experiment.

2For details concerning the types of PIIs that can be found
in the data, consult Megyesi et al. (2021).



In this experiment we fine-tune three different
BERT-based LLMs, using 5-fold cross-validation.
The LLMs in question are the BERT model for
Swedish developed by the National Library of Swe-
den3 (KB-BERT, Malmsten et al. (2020)), the mul-
tilingual BERT4 (M-BERT, Devlin et al. (2018)),
as in Szawerna et al. (2024)), and – unlike in the
original experiment – AI Sweden’s RoBERTa5 (AI-
Sweden’s RoBERTa, AI Sweden). The fine-tuning
process is conducted in the same way as in Sza-
werna et al. (2024), utilizing modified code from
the Transformers library (Wolf et al., 2020) and the
same settings: a batch size of 8, 3 epochs, and the
AdamW optimizer (learning rate: 05e-05).

4 Results and Discussion

While performing a 5-fold cross-validation of the
models allows us to gain better insights into the
performance of the respective LLMs on the task
of PII detection, we do not have enough versions
per model to provide a reliable statistical analysis.
This is due to the computational requirements of
fine-tuning these models. Therefore, in Table 2 and
Table 3 we only report the mean scores across the
folds, alongside the standard deviation (Numbers
in bold indicate the highest score across both ta-
bles). We highlight the best performances in bold.
We have also selected to focus our analysis on the
weighted averages of precision, recall, F1, and F26

scores only across the PII classes (disregarding the
scores for the non-PII tokens) – following Gran-
charova and Dalianis (2021) and Szawerna et al.
(2024). Focusing only on the PII classes allows
us to compensate for the class imbalance of the
non-PII vs. PII classes. We chose to report F2
since it gives more importance to recall, which is
essential for reflecting how many of the PIIs were
detected (and, therefore, how successful the model
is at protecting the data subjects). Nevertheless,
precision is important as well, since we want to
tamper with the data as little as necessary. Detailed
per-model results and a wider selection of measures
are provided in Appendix A.

In terms of per-PII-class precision, Szawerna
et al. (2024) report 0.8748 as the highest score,

3https://huggingface.co/KB/bert-base-swedish
-cased

4https://huggingface.co/google-bert/bert-bas
e-multilingual-cased

5https://huggingface.co/AI-Sweden-Models/robe
rta-large-1160k

6Fβ = (1 + β2) ∗ precision∗recall
(β2∗precision)+recall

where β = 2

KB-BERT

Precision Recall F1 F2

Average 0.857 0.784 0.810 0.793
STD 0.036 0.054 0.039 0.047

M-BERT

Precision Recall F1 F2

Average 0.831 0.775 0.794 0.782
STD 0.027 0.033 0.026 0.030

AI-Sweden’s RoBERTa

Precision Recall F1 F2

Average 0.690 0.653 0.665 0.657
STD 0.387 0.367 0.372 0.368

Table 2: Measures across only the PII classes for the
models without a weighted loss function.

KB-BERT

Precision Recall F1 F2

Average 0.619 0.883 0.727 0.813
STD 0.032 0.037 0.031 0.032

M-BERT

Precision Recall F1 F2

Average 0.625 0.858 0.721 0.797
STD 0.036 0.043 0.032 0.035

AI-Sweden’s RoBERTa

Precision Recall F1 F2

Average 0.261 0.354 0.300 0.330
STD 0.360 0.486 0.413 0.453

Table 3: Measures across only the PII classes for the
models with a weighted loss function.

obtained by their KB-BERT model fine-tuned with-
out a weighted loss function. In our case, the best
performance is also obtained by the same model
and loss function combination, but the actual score
drops to 0.857 with a standard deviation of 0.036.

As far as the per-PII-class recall is concerned,
Szawerna et al. (2024)’s best model is KB-BERT
with a weighted loss function, which scores 0.902.
Among our models, once again the same model
prevails, with 0.883 recall and an STD of 0.037.

We do, however, note that our best F1 score is
higher than that reported by Szawerna et al. (2024).
Theirs was of KB-BERT without a weighted loss
function at 0.803, while ours – for the same model
and loss function – is 0.810, with a standard devi-
ation of 0.039. It is worth pointing out, however,
that the STD for that score is quite big (0.054),
meaning that there is larger variety between recall
scores.

https://huggingface.co/KB/bert-base-swedish-cased
https://huggingface.co/KB/bert-base-swedish-cased
https://huggingface.co/google-bert/bert-base-multilingual-cased
https://huggingface.co/google-bert/bert-base-multilingual-cased
https://huggingface.co/AI-Sweden-Models/roberta-large-1160k
https://huggingface.co/AI-Sweden-Models/roberta-large-1160k


While the F2 score has not previously been re-
ported for this task, we note that if we consider
recall more important than precision, then this com-
bined score elevates KB-BERT with a weighted
loss function, as it achieved F2 equal to 0.813 (STD:
0.032).

Notably, with the changes that we have intro-
duced we no longer see the catastrophic drop in
the performance of the M-BERT model fine-tuned
with a weighted loss function reported by Szaw-
erna et al. (2024). Interestingly, though, we do
note that a similar effect can be observed in AI-
Sweden’s RoBERTa when using weighted loss,
where the scores revolve around 30% on average,
with large standard deviations. When inspecting
the per-model scores, we noted that three out of five
runs seem to have completely stopped predicting
the PII classes. This is also true for one out of five
RoBERTa runs without a weighted loss function
(resulting in a large STD for those as well). This
could very well be due to the large imbalance of the
PII classes versus the non-PII tokens, but further
experiments would be needed to confirm whether
that is the case.

What is worth noting is that the different folds
for AI-Sweden’s RoBERTa lead to very inconsis-
tent performances, and while on the results of some
of those models on their own are quite high, the
fine-tuning of this LLM is not reliable with the
current setup.

5 Conclusions

Within this experiment we attempted to improve
the PII detection model introduced by Szawerna
et al. (2024), increase the amount of training data,
and evaluate one more Large Language Model’s
performance. When it comes to the best performing
models, we did not note any changes that are likely
to be statistically significant. Our changes and
improvements have, however, led to eliminating the
issues with M-BERT with a weighted loss function.

We have also observed that the current setup
leads to very inconsistent results when fine-tuning
AI-Sweden’s RoBERTa, but we note that singular
results from those models exceed those of any other
model. This suggests that better results can be
obtained using the latter model, but that requires us
to eliminate the issues leading to the over-detection
of the “outside" class.

This experiment solidifies the previous findings
that simplifying the personal information detec-

tion task down to whether a token is personal or
not given the context (but disregarding further sub-
classification) is a valid method, and hopefully con-
tributes to the efforts of building a pipeline for
anonymizing or pseudonymizing a wider variety of
Swedish texts.

6 Future Work

Given the results reported for AI-Sweden’s
RoBERTa, a natural continuation of this experi-
ment would be to identify and neutralize the is-
sues causing the model’s inconsistent performance.
Since the model is only trained on one domain of
data (learner essays), it would be interesting to see
how it performs on other kinds of data, or how
mixing data from various domains will affect the
performance. Another idea would be to compare
IOB-based PII detection to more detailed classifi-
cation.

Limitations

We would like to draw the attention to the limi-
tations concerning the fine-tuning of the models
that are present in our experiment. With a total of
6 model and loss function combinations, it would
have been very computationally expensive to fine-
tune more versions; however, this has a negative
impact on our ability to make statistically relevant
comparisons. Additionally, better scores are likely
possible with some hyper-parameter tweaking.

Ethics Statement

When working with personal information, the
safety and privacy of our data subjects is paramount.
Since our training data contains such information,
we can share neither the data, nor the fine-tuned
models. For the same reason we can only use mod-
els which can be run locally, without uploading the
data to any third parties.

Acknowledgments

This work has been possible thanks to the funding
of two grants from the Swedish Research Council.

The project Grandma Karl is 27 years old: Auto-
matic pseudonymization of research data has fund-
ing number 2022-02311 for the years 2023-2029.

The Swedish national research infrastructure Na-
tionella Språkbanken is funded jointly by contract
number 2017-00626 for the years 2018-2024, as
well 10 participating partner institutions.



References
AI Sweden. AI-Sweden-models/Roberta-large-1160K.

Jason Ansel, Edward Yang, Horace He, Natalia
Gimelshein, Animesh Jain, Michael Voznesensky,
Bin Bao, Peter Bell, David Berard, Evgeni Burovski,
Geeta Chauhan, Anjali Chourdia, Will Constable,
Alban Desmaison, Zachary DeVito, Elias Ellison,
Will Feng, Jiong Gong, Michael Gschwind, Brian
Hirsh, Sherlock Huang, Kshiteej Kalambarkar, Lau-
rent Kirsch, Michael Lazos, Mario Lezcano, Yanbo
Liang, Jason Liang, Yinghai Lu, CK Luk, Bert Ma-
her, Yunjie Pan, Christian Puhrsch, Matthias Reso,
Mark Saroufim, Marcos Yukio Siraichi, Helen Suk,
Michael Suo, Phil Tillet, Eikan Wang, Xiaodong
Wang, William Wen, Shunting Zhang, Xu Zhao,
Keren Zhou, Richard Zou, Ajit Mathews, Gregory
Chanan, Peng Wu, and Soumith Chintala. 2024. Py-
Torch 2: Faster Machine Learning Through Dynamic
Python Bytecode Transformation and Graph Com-
pilation. In 29th ACM International Conference on
Architectural Support for Programming Languages
and Operating Systems, Volume 2 (ASPLOS ’24).
ACM.

Beata Beigman Klebanov and Nitin Madnani. 2020. Au-
tomated evaluation of writing – 50 years and count-
ing. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pages
7796–7810, Online. Association for Computational
Linguistics.

Hanna Berg, Taridzo Chomutare, and Hercules Dalia-
nis. 2019. Building a de-identification system for
real Swedish clinical text using pseudonymised clin-
ical text. In Proceedings of the Tenth International
Workshop on Health Text Mining and Information
Analysis (LOUHI 2019), pages 118–125, Hong Kong.
Association for Computational Linguistics.

Hanna Berg and Hercules Dalianis. 2019. Augmenting
a de-identification system for Swedish clinical text
using open resources and deep learning. In Proceed-
ings of the Workshop on NLP and Pseudonymisation,
pages 8–15, Turku, Finland. Linköping Electronic
Press.

Hanna Berg and Hercules Dalianis. 2021. HB Deid - HB
de-identification tool demonstrator. In Proceedings
of the 23rd Nordic Conference on Computational
Linguistics (NoDaLiDa), pages 467–471, Reykjavik,
Iceland (Online). Linköping University Electronic
Press, Sweden.

Christopher Bryant, Zheng Yuan, Muhammad Reza
Qorib, Hannan Cao, Hwee Tou Ng, and Ted
Briscoe. 2023. Grammatical Error Correction: A
Survey of the State of the Art. arXiv preprint
arXiv:2211.05166.

Hercules Dalianis. 2019. Pseudonymisation of Swedish
electronic patient records using a rule-based ap-
proach. In Proceedings of the Workshop on NLP
and Pseudonymisation, pages 16–23, Turku, Finland.
Linköping Electronic Press.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. BERT: Pre-training of
Deep Bidirectional Transformers for Language Un-
derstanding. arXiv preprint arXiv:1810.04805.

Anne Golden, Scott Jarvis, and Kari Tenfjord. 2017.
Crosslinguistic influence and distinctive patterns of
language learning: Findings and insights from a
learner corpus, volume 118. Multilingual Matters.

Mila Grancharova and Hercules Dalianis. 2021. Apply-
ing and sharing pre-trained BERT-models for named
entity recognition and classification in Swedish elec-
tronic patient records. In Proceedings of the 23rd
Nordic Conference on Computational Linguistics
(NoDaLiDa), pages 231–239, Reykjavik, Iceland
(Online). Linköping University Electronic Press,
Sweden.

Roman Grundkiewicz and Marcin Junczys-Dowmunt.
2019. Minimally-augmented grammatical error cor-
rection. In Proceedings of the 5th Workshop on Noisy
User-generated Text (W-NUT 2019), pages 357–363,
Hong Kong, China. Association for Computational
Linguistics.

Nadezhda Stanislavovna Lagutina,
Kseniya Vladimirovna Lagutina, Anasta-
sya Mikhailovna Brederman, and Natalia Nikolaevna
Kasatkina. 2023. Text classification by CEFR levels
using machine learning methods and BERT language
model. Modelirovanie i Analiz Informatsionnykh
Sistem, 30(3):202–213.

Pierre Lison, Ildikó Pilán, David Sanchez, Montser-
rat Batet, and Lilja Øvrelid. 2021. Anonymisation
models for text data: State of the art, challenges and
future directions. In Proceedings of the 59th Annual
Meeting of the Association for Computational Lin-
guistics and the 11th International Joint Conference
on Natural Language Processing (Volume 1: Long
Papers), pages 4188–4203, Online. Association for
Computational Linguistics.

Martin Malmsten, Love Börjeson, and Chris Haffenden.
2020. Playing with Words at the National Library
of Sweden – Making a Swedish BERT. Preprint,
arXiv:2007.01658.

Beáta Megyesi, Lisa Rudebeck, and Elena Volodina.
2021. SweLL pseudonymization guidelines. GU-ISS
Forskningsrapporter från Institutionen för svenska,
flerspråkighet och språkteknologi, GU-ISS 2021-02.

Official Journal of the European Union. 2016. Con-
solidated text: Regulation (EU) 2016/679 of the Eu-
ropean Parliament and of the Council of 27 April
2016 on the protection of natural persons with re-
gard to the processing of personal data and on the
free movement of such data, and repealing Directive
95/46/EC (General Data Protection Regulation) (Text
with EEA relevance). Official Journal, (Document
02016R0679-20160504).

Fabian Pedregosa, Gaël Varoquaux, Alexandre Gram-
fort, Vincent Michel, Bertrand Thirion, Olivier Grisel,

https://huggingface.co/AI-Sweden-Models/roberta-large-1160k
https://doi.org/10.1145/3620665.3640366
https://doi.org/10.1145/3620665.3640366
https://doi.org/10.1145/3620665.3640366
https://doi.org/10.1145/3620665.3640366
https://doi.org/10.18653/v1/2020.acl-main.697
https://doi.org/10.18653/v1/2020.acl-main.697
https://doi.org/10.18653/v1/2020.acl-main.697
https://doi.org/10.18653/v1/D19-6215
https://doi.org/10.18653/v1/D19-6215
https://doi.org/10.18653/v1/D19-6215
https://aclanthology.org/W19-6502
https://aclanthology.org/W19-6502
https://aclanthology.org/W19-6502
https://aclanthology.org/2021.nodalida-main.54
https://aclanthology.org/2021.nodalida-main.54
https://aclanthology.org/W19-6503
https://aclanthology.org/W19-6503
https://aclanthology.org/W19-6503
https://aclanthology.org/2021.nodalida-main.23
https://aclanthology.org/2021.nodalida-main.23
https://aclanthology.org/2021.nodalida-main.23
https://aclanthology.org/2021.nodalida-main.23
https://doi.org/10.18653/v1/D19-5546
https://doi.org/10.18653/v1/D19-5546
https://www.semanticscholar.org/paper/Text-classification-by-CEFR-levels-using-machine-Lagutina-Lagutina/22849bb6d04327a129c207639d25307363e3be1f
https://www.semanticscholar.org/paper/Text-classification-by-CEFR-levels-using-machine-Lagutina-Lagutina/22849bb6d04327a129c207639d25307363e3be1f
https://www.semanticscholar.org/paper/Text-classification-by-CEFR-levels-using-machine-Lagutina-Lagutina/22849bb6d04327a129c207639d25307363e3be1f
https://doi.org/10.18653/v1/2021.acl-long.323
https://doi.org/10.18653/v1/2021.acl-long.323
https://doi.org/10.18653/v1/2021.acl-long.323
https://arxiv.org/abs/2007.01658
https://arxiv.org/abs/2007.01658
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A02016R0679-20160504
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A02016R0679-20160504
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A02016R0679-20160504
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A02016R0679-20160504
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A02016R0679-20160504
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A02016R0679-20160504
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A02016R0679-20160504
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A02016R0679-20160504


Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vin-
cent Dubourg, Jake Vanderplas, Alexandre Passos,
David Cournapeau, Matthieu Brucher, Matthieu Per-
rot, and Édouard Duchesnay. 2011. Scikit-learn: Ma-
chine Learning in Python. Journal of Machine Learn-
ing Research, 12:2825–2830.

Egon W Stemle, Adriane Boyd, Maarten Jansen,
Therese Lindström Tiedemann, Nives Mikelić Pre-
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A Appendix: Class Counts, Weights, and
Detailed Results

Instances (%) Count Weight
B 1.41% 3111 23.66
I 0.11% 237 310.52
O 98.48% 217430 0.33

Table 4: The proportions of token instances of classes
in the data used in the experiment and the correspond-
ing calculated class weights for experiments with KB-
BERT.

Instances (%) Count Weight
B 1.60% 3111 20.78
I 0.12% 237 272.82
O 98.27% 190626 0.34

Table 5: The proportions of token instances of classes
in the data used in the experiment and the corresponding
calculated class weights for experiments with M-BERT.

Instances (%) Count Weight
B 1.79% 3111 18.59
I 0.14% 237 244.013
O 98.07% 170145 0.34

Table 6: The proportions of token instances of classes
in the data used in the experiment and the correspond-
ing calculated class weights for experiments with AI-
Sweden’s RoBERTa.



Accuracy Precision Recall F1 F2 MCC
Sensitive
Precision

Sensitive
Recall

Sensitive
F1

Sensitive
F2

Model 1 0.995294 0.995074 0.995294 0.994897 0.995117 0.798232 0.862433 0.737319 0.777104 0.751789
Model 2 0.995719 0.995696 0.995719 0.995707 0.995714 0.861316 0.857771 0.856305 0.856995 0.856572
Model 3 0.994029 0.993586 0.994029 0.993698 0.993886 0.785669 0.796362 0.745710 0.763545 0.752142
Model 4 0.994902 0.994634 0.994902 0.994638 0.994774 0.820049 0.887983 0.754545 0.812867 0.776487
Model 5 0.995202 0.995131 0.995202 0.994900 0.995057 0.856825 0.880130 0.825338 0.837538 0.828830
K-fold mean 0.995029 0.994824 0.995029 0.994768 0.994910 0.824418 0.856936 0.783843 0.809610 0.793164
K-fold STD 0.000631 0.000788 0.000631 0.000721 0.000667 0.033978 0.036062 0.053501 0.039416 0.047343

Table 7: Detailed results for the KB-BERT model without a weighted loss function

Accuracy Precision Recall F1 F2 MCC
Sensitive
Precision

Sensitive
Recall

Sensitive
F1

Sensitive
F2

Model 1 0.990770 0.993043 0.990770 0.991582 0.990991 0.707881 0.580454 0.847826 0.688978 0.776190
Model 2 0.989598 0.993134 0.989598 0.990823 0.989900 0.752192 0.617264 0.932551 0.741469 0.844452
Model 3 0.989888 0.992136 0.989888 0.990684 0.990103 0.718842 0.597128 0.845554 0.699533 0.780258
Model 4 0.991518 0.993345 0.991518 0.992142 0.991680 0.770238 0.659364 0.898485 0.760498 0.837663
Model 5 0.990039 0.992246 0.990039 0.990780 0.990223 0.765317 0.642115 0.888069 0.745001 0.824611
K-fold mean 0.990362 0.992781 0.990362 0.991202 0.990580 0.742894 0.619265 0.882497 0.727096 0.812635
K-fold STD 0.000777 0.000551 0.000777 0.000636 0.000741 0.028024 0.032134 0.036602 0.031047 0.032244

Table 8: Detailed results for the KB-BERT model with a weighted loss function

Accuracy Precision Recall F1 F2 MCC
Sensitive
Precision

Sensitive
Recall

Sensitive
F1

Sensitive
F2

Model 1 0.994317 0.993833 0.994317 0.994007 0.994183 0.785353 0.809423 0.739130 0.769499 0.750605
Model 2 0.993883 0.993799 0.993883 0.993810 0.993850 0.823782 0.822239 0.816716 0.817711 0.816901
Model 3 0.994167 0.993734 0.994167 0.993742 0.993981 0.799651 0.830278 0.748752 0.776084 0.758689
Model 4 0.994300 0.994203 0.994300 0.994044 0.994178 0.834744 0.877261 0.798571 0.826560 0.808725
Model 5 0.992593 0.992039 0.992593 0.992019 0.992343 0.812006 0.818028 0.772448 0.780969 0.774885
K-fold mean 0.993852 0.993522 0.993852 0.993524 0.993707 0.811107 0.831446 0.775123 0.794164 0.781961
K-fold STD 0.000725 0.000849 0.000725 0.000851 0.000775 0.019459 0.026694 0.032703 0.026045 0.029631

Table 9: Detailed results for the M-BERT model without a weighted loss function

Accuracy Precision Recall F1 F2 MCC
Sensitive
Precision

Sensitive
Recall

Sensitive
F1

Sensitive
F2

Model 1 0.989526 0.991487 0.989526 0.990166 0.989676 0.691246 0.571514 0.809783 0.666948 0.745238
Model 2 0.988573 0.992005 0.988573 0.989773 0.988885 0.750397 0.623565 0.913490 0.740544 0.835067
Model 3 0.991328 0.992283 0.991328 0.991608 0.991388 0.747359 0.664426 0.818636 0.728981 0.779445
Model 4 0.989250 0.991456 0.989250 0.990032 0.989466 0.752611 0.649001 0.877143 0.746002 0.819511
Model 5 0.986974 0.989899 0.986974 0.987942 0.987206 0.742949 0.616482 0.870849 0.720684 0.803483
K-fold mean 0.989130 0.991426 0.989130 0.989904 0.989324 0.736912 0.624998 0.857980 0.720632 0.796549
K-fold STD 0.001578 0.000923 0.001578 0.001309 0.001507 0.025784 0.035587 0.043258 0.031590 0.035300

Table 10: Detailed results for the M-BERT model with a weighted loss function

Accuracy Precision Recall F1 F2 MCC
Sensitive
Precision

Sensitive
Recall

Sensitive
F1

Sensitive
F2

Model 1 0.994879 0.994370 0.994879 0.994500 0.994714 0.828151 0.852875 0.780037 0.808646 0.790642
Model 2 0.993938 0.994188 0.993938 0.994050 0.993979 0.849293 0.832115 0.866084 0.848433 0.858830
Model 3 0.981818 0.963966 0.981818 0.972810 0.978195 0.000000 0.000000 0.000000 0.000000 0.000000
Model 4 0.994358 0.994217 0.994358 0.993958 0.994171 0.846429 0.910588 0.789781 0.833562 0.805941
Model 5 0.993385 0.993212 0.993385 0.993181 0.993286 0.848825 0.852647 0.830189 0.836233 0.831862
K-fold mean 0.991675 0.987991 0.991675 0.989700 0.990869 0.674540 0.689645 0.653218 0.665375 0.657455
K-fold STD 0.005538 0.013438 0.005538 0.009454 0.007104 0.377180 0.386632 0.366762 0.372236 0.368444

Table 11: Detailed results for the AI-Sweden’s RoBERTa model without a weighted loss function



Accuracy Precision Recall F1 F2 MCC
Sensitive
Precision

Sensitive
Recall

Sensitive
F1

Sensitive
F2

Model 1 0.988704 0.991199 0.988704 0.989603 0.988955 0.708627 0.591056 0.837338 0.692827 0.772809
Model 2 0.990878 0.993067 0.990878 0.991648 0.991081 0.808050 0.715271 0.931587 0.807780 0.876952
Model 3 0.981818 0.963966 0.981818 0.972810 0.978195 0.000000 0.000000 0.000000 0.000000 0.000000
Model 4 0.980282 0.960952 0.980282 0.970520 0.976354 0.000000 0.000000 0.000000 0.000000 0.000000
Model 5 0.977331 0.955176 0.977331 0.966127 0.972818 0.000000 0.000000 0.000000 0.000000 0.000000
K-fold mean 0.983803 0.972872 0.983803 0.978142 0.981480 0.303335 0.261266 0.353785 0.300121 0.329952
K-fold STD 0.005751 0.017876 0.005751 0.011669 0.008065 0.416844 0.360438 0.485585 0.412963 0.453304

Table 12: Detailed results for the AI-Sweden’s RoBERTa model with a weighted loss function
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