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Abstract

Preliminary findings of an ongoing work ex-
amining the efficacy of language adapters for
cross-lingual transfer in English-centric LLMs
are presented. Using Llama 2 7B as base
LLM, language adapters are trained for 13 lan-
guages. Their efficacy is assessed by train-
ing task adapters on two datasets in various
source languages, with a zero-shot evaluation
in the target languages. Current results demon-
strate that language adapters exhibit inconsis-
tent performance across languages and tasks,
frequently harming performance. Some lan-
guages perform better with language adapters
when a non-English source language is utilized
suggesting that English may not be the optimal
language for transfer.

1 Introduction

Most state-of-the-art LLMs are English-centric
(Touvron et al., 2023; Jiang et al., 2023). To il-
lustrate, in Llama 2 (Touvron et al., 2023), English
constitutes 90% of the pre-training data. Despite
this data imbalance, recent English-centric LLMs
exhibit some multilingual capabilities (Kew et al.,
2023; Ye et al., 2023). However, these capabilities
are inconsistent across languages and tasks, with
low-resource languages being particularly affected
(Razumovskaia et al., 2024).

To endow LLMs with more profound multi-
lingual capabilities, cross-lingual transfer (XLT)
has emerged as a prevalent paradigm aiming to
transfer task-specific knowledge from a high-
resource source language to a lower-resource
target language, thereby alleviating the constraint
of having supervised task data (Philippy et al.,
2023). One common setup for enhancing XLT

abilities is to combine language and task adapters,
parameter-efficient modules that are trained on
top of a frozen base LLM and capture language-
and task-specific representations, respectively
(Pfeiffer et al., 2024). While this setup has been

extensively evaluated for small-scale multilingual
LLMs (Pfeiffer et al., 2020b; Parović et al., 2022;
Rathore et al., 2023; Yong et al., 2023), there
is little work that assesses its applicability to
large-scale English-centric LLMs (Lin et al., 2024;
Razumovskaia et al., 2024). Therefore, this work
seeks to address the following RQs:

RQ1: Can adapter-based setups help enhance
XLT abilities of English-centric LLMs?

RQ2: What patterns can be observed in terms
of source language choice, typological
relatedness, and downstream task?

2 Related Work

Language Adapters. Language adapters (LA) rep-
resent a parameter-efficient and modular method
for language adaptation (Poth et al., 2023). They
are added to a frozen base LLM and trained on
monolingual, unsupervised data via language mod-
eling in order to learn language-specific representa-
tions (Pfeiffer et al., 2020a). In general, any adapter
architecture can be utilized for LA training: Prior
work on small-scale, multilingual base LLMs has
primarily employed bottleneck adapters (Houlsby
et al., 2019) for LA training (Pfeiffer et al., 2020b;
Parović et al., 2022; Faisal and Anastasopoulos,
2022; Yong et al., 2023). They observed enhanced
XLT, particularly for lower-resource languages.
However, Kunz and Holmström (2024) find that
the effect of LAs varies considerably across target
languages and omitting LAs is beneficial in some
cases. More recent work that employs large-scale,
English-centric base LLMs prefers LoRA adapters
(Hu et al., 2021) for LA training (Lin et al., 2024;
Razumovskaia et al., 2024). This may be due to
the inference latency that bottleneck adapters intro-
duce, which LoRA adapters help mitigate by merg-
ing their weights with the base LLM’s weights (Hu
et al., 2021).



Cross-lingual transfer in English-centric LLMs.
Previous work evaluating XLT in English-centric
LLMs can be roughly divided into four approaches:
LA + ICL trains LAs for a base LLM followed by
in-context learning (ICL)1 at inference. Lin et al.
(2024) report performance gains for languages with
low-resource scripts, Razumovskaia et al. (2024)
for NLG tasks only. TA + ICL directly trains
single-task task adapters (TA) followed by ICL. Ye
et al. (2023) show that minimal pre-training data
for a given target language is conducive to XLT.
IT + ICL uses multi-task instruction tuning (IT) to
fine-tune a base LLM, followed by ICL. Previous
work finds that multilingual IT with only a few lan-
guages (Aggarwal et al., 2024; Kew et al., 2023),
or even monolingual IT in English (Chirkova and
Nikoulina, 2024), suffices to elicit robust XLT abil-
ities. ICL uses ICL only. Asai et al. (2024) and
Ahuja et al. (2024) introduce XLT ICL benchmarks,
revealing that English-centric LLMs perform well
in high-resource languages but struggle with low-
resource languages.

3 Experimental Setup

Unlike most previous work that assessed the XLT

abilities of English-centric LLMs, this work be-
gins by adapting the XLT setup as it is commonly
employed for multilingual LLMs. The subsequent
section details the current experimental setup. The
experiments are still in progress.

3.1 Model
The open-source Llama 2 7B (Touvron et al., 2023)
is selected as the base LLM. Despite the limited
non-English pre-training data (2%), Llama 2 has
demonstrated certain XLT abilities when fine-tuned
for specific tasks (Ye et al., 2023) or evaluated us-
ing ICL (Asai et al., 2024; Ahuja et al., 2024). Re-
fer to Appendix C for a breakdown of the language
distribution in Llama 2’s pre-training data.

3.2 Adapter Method
At present, this work utilizes bottleneck adapters as
proposed by Pfeiffer et al. (2020b) to train LAs and
TAs. This method injects trainable adapter layers
into the frozen base LLM, comprising a down- and
an up-projection, situated after the feed-forward
block of each transformer layer. Crucially, this ar-
chitecture allows composition; multiple bottleneck
adapters can be easily stacked on top of each other.

1Following Li (2023), ICL encompasses any learning with-
out parameter updates including zero-shot evaluation.

3.3 Data

Language Data. Following previous work
(Pfeiffer et al., 2020b), this work trains LAs on
monolingual, unsupervised data extracted from
CC-100 (Conneau et al., 2020).

Task Data. Currently, one NLG task and one NLU
task are evaluated: For NLG, MLQA-en (T) - an ex-
tractive QA dataset from the Aya Collection (Singh
et al., 2024) - extends the English subset of MLQA
(Lewis et al., 2020) with translations into 100 lan-
guages. For NLU, SIB-200 (Adelani et al., 2024)
is selected, a topic classification dataset with seven
labels. These datasets were chosen primarily for
their extensive language coverage and availability
of parallel data. Given the use of autoregressive
LLMs, both tasks are framed as generative (see
Appendix F for task templates). Exact Match and
F1 are used as evaluation metrics for both tasks.

3.4 Languages

The current set includes 13 languages from three
language groups: Seven Germanic languages, four
Romance languages and two Finno-Ugric lan-
guages (see Appendix B for an overview on all
languages). In each XLT setup, one language is des-
ignated as the source language, with the remaining
ones as target languages. At present, English, Ger-
man, and Spanish are selected as source languages.
English serves as a reference, given its frequent use
as a source language (e.g., Pfeiffer et al., 2020b;
Parović et al., 2022). Based on the assumption that
higher-resource languages generally transfer more
effectively than lower-resource languages (Senel
et al., 2024), German and Spanish are chosen as
non-English source languages. Finno-Ugric lan-
guages are excluded as source languages due to
their limited resources and typological distance
from other languages.

3.5 Training & Evaluation Setups

The present work trains and evaluates two simple
XLT setups to gain initial insights into the efficacy
of LAs for XLT in English-centric LLMs (see Ap-
pendix A for training details and Appendix G for a
detailed walk-through example):

(1) LA, adapted from Pfeiffer et al. (2020b),
first trains language-specific LAs for all relevant
languages, then trains a TA in the selected source
language on top of the frozen source LA, and finally
evaluates XLT zero-shot by replacing the source LA



Setup af gl is da hu fi ca pt nl es sv de en avg.

LAen 0.42 0.46 0.2 0.3 0.28 0.22 0.41 0.44 0.45 0.4 0.34 0.45 0.78 0.4
LAde 0.47 0.51 0.29 0.45 0.4 0.35 0.51 0.5 0.5 0.45 0.45 0.52 0.45 0.45
LAes 0.44 0.52 0.29 0.45 0.38 0.33 0.53 0.51 0.48 0.53 0.44 0.46 0.52 0.45
noLAen 0.41 0.43 0.16 0.42 0.31 0.26 0.51 0.49 0.5 0.41 0.43 0.46 0.78 0.43
noLAde 0.41 0.44 0.2 0.49 0.41 0.35 0.53 0.52 0.44 0.46 0.46 0.53 0.38 0.43
noLAes 0.38 0.4 0.18 0.44 0.35 0.3 0.47 0.5 0.46 0.53 0.42 0.43 0.39 0.4

Table 1: MLQA-en F1 scores for LA and noLA setup using different source languages. Underlined marks the best
score within setting (LA or noLA), bold marks the best score between settings.

Setup af gl is da hu fi ca pt nl es sv de en avg.

LAen 0.51 0.74 0.31 0.65 0.48 0.48 0.62 0.77 0.77 0.8 0.7 0.79 0.86 0.65
LAde 0.72 0.76 0.54 0.77 0.74 0.68 0.75 0.78 0.82 0.81 0.77 0.85 0.78 0.75
LAes 0.7 0.79 0.56 0.79 0.69 0.64 0.76 0.83 0.82 0.82 0.81 0.82 0.74 0.75
noLAen 0.66 0.76 0.35 0.72 0.63 0.55 0.79 0.83 0.77 0.83 0.74 0.8 0.85 0.71
noLAde 0.78 0.81 0.52 0.83 0.8 0.76 0.84 0.85 0.86 0.82 0.83 0.87 0.85 0.8
noLAes 0.75 0.81 0.45 0.79 0.76 0.68 0.86 0.86 0.85 0.84 0.81 0.82 0.83 0.78

Table 2: SIB-200 F1 scores for LA and noLA setup using different source languages. Underlined marks the best
score within setting (LA or noLA), bold marks the best score between settings.

with the target LA while retaining the source TA.
(2) noLA omits LAs entirely. Only a TA is

trained in the source language, then evaluated zero-
shot in the target languages.

If LAs are beneficial, LA should outperform
noLA. Besides their parameter-efficiency, LAs are
motivated by their modularity. To retain modu-
larity - particularly LA replacement at inference
- the TA needs to be trained on top of the source
LA. Omitting the source LA results in nonsensical
outputs, as the model has not been exposed to an
adapter stack during training. Alternatively, TAs,
and thus the source LA, can be bypassed by using
in-context learning, which does not involve task-
specific fine-tuning. In-context learning is currently
under evaluation.

4 Results & Analysis

Current findings are presented in Table 1 and 2.
For each TA, the mean F1 scores over five random
seeds are reported (see Appendix E for further re-
sults). In Table 1 and 2, the languages are ordered
in ascending order according to the amount of pre-
training data in Llama 2. The first vertical bar splits
into unseen (left) and seen (right) languages.

4.1 Main Results

LAs do not consistently enhance XLT across target
languages and tasks and often degrade performance.
The average scores in Table 1 and 2 show that in
only 2 out of 6 setups - LAde and LAes on MLQA-
en - LA outperforms its noLA counterpart. Even

for the source languages themselves, LAs are un-
able to boost performance across tasks. These ini-
tial findings are in line with Kunz and Holmström
(2024), who also observe inconsistencies across tar-
get languages and tasks for multilingual LLMs, as
well as performance degradation with LAs in some
cases. Moreover, the current findings align with
previous work (Yong et al., 2023; Pfeiffer et al.,
2020b) indicating that LAs are most beneficial
for languages unseen during pre-training suggest-
ing that LAs are able to capture target-language-
specific representations without being susceptible
to pre-training biases for these languages.

In this limited experimental setup, it cannot be
concluded that LAs are a universal XLT booster
in English-centric LLMs, as they entail increased
computational cost while not consistently boost-
ing performance across target languages and tasks.
To test this tentative conclusion in greater detail,
potential key variables are discussed below.

4.2 Impact of Task Type and Data

With the exception of Icelandic, the positive effect
observed with LAs is limited to the NLG dataset
MLQA-en. Kew et al. (2023) and Razumovskaia
et al. (2024) also reported more pronounced XLT

improvements for tasks requiring input/output lan-
guage agreement (mostly NLG tasks). However, a
more extensive evaluation on more tasks is needed
to support this hypothesis since the MLQA-en tar-
gets often consist of a named entity that is uniform
across several languages. Moreover, in contrast to



SIB-200, MLQA-en is machine translated, which
may render it susceptible to translation errors. Con-
sidering that the LAs are only beneficial for LAde

and LAes on MLQA-en, this may indicate that
translated data contain similar noise, thereby facili-
tating generalization across non-English languages
while hindering generalization from English to non-
English target languages.

4.3 Impact of Source Language

Employing English as a high-resource source lan-
guage, does not seem to be optimal. LAen is
only able to outperform noLAen for the unseen
languages Afrikaans, Galician and Icelandic on
MLQA-en. Most target languages exhibit a con-
siderable deficit in performance relative to their
noLAen counterparts. LAde and LAes are more
effective across target languages on MLQA-en.
Again, LAs are most beneficial for unseen lan-
guages. LAes even performs on par with or bet-
ter than noLAes across all target languages, yet
is often outperformed by noLA setups with other
source languages. Notably, performance drops dis-
proportionately for English as target language, sug-
gesting that a non-English source language disrupts
pre-trained English-centric representations. In the
case of SIB-200, LA is not superior for any of
the source languages tested. However, the perfor-
mance of LAen again exhibits a significant deficit
relative to the other source languages, with gaps
of up to 0.26 (Hungarian). Moreover, the impact
of a non-English source language on English as
target language is less pronounced than on MLQA-
en. It is postulated that the use of English, the
predominant language in Llama 2, as source lan-
guage, engenders a further bias towards English
and thus, impedes XLT. In addition, current ob-
servations indicate that, despite the limited pre-
training data (German: 0.17%, Spanish: 0.13%),
these languages can be leveraged for XLT. A factor
that is believed to contribute to the task differences
is the data formatting: Unlike SIB-200, which em-
ploys English instructions and labels for all lan-
guages, MLQA-en provides instructions and labels
in the respective target language.

4.4 Impact of Typological Relatedness

Current results show that XLT is impeded for more
distant target languages (here: non-Indo-European
Hungarian and Finnish, as well as Icelandic with-
out a close Germanic relative). These languages
perform the worst across setup, source language

and task. It is hypothesized that the observed defi-
ciencies are due to a small vocabulary overlap, as
indicated by the higher fertility in Table 6. Since
the LAs employed in the present work do not op-
erate on embedding level they are not expected to
mitigate this issue.

Regarding potential benefits of typological re-
latedness for XLT, current results do not yield a
discernible pattern. Comparing LAde and LAes,
Table 1 reveals that Romance and Germanic tar-
get languages perform slightly, perhaps negligibly
better when transferring from Spanish and Ger-
man, respectively. For Catalan and Dutch, relat-
edness to their source language may be a crucial
factor, as both languages show superior perfor-
mance in the LA setup when transferring from
the related source language and superior perfor-
mance in the noLA setup when transferring from
the more distant source language. However, a com-
parison within a source language shows for LAes

that Romance languages do not consistently exhibit
a greater benefit than other target languages. These
observations suggest that XLT may benefit from
some shallow typological relatedness.

5 Conclusion & Outlook

This work presents initial findings on the efficacy of
LAs for XLT in English-centric LLMs. Regarding
RQ1, the current results indicate that LAs’ effect
is largely inconsistent across target languages and
tasks as noLA often outperforms LA. As for the
language set examined, LAs are most beneficial for
target languages unseen during pre-training. Re-
garding RQ2, non-English source languages seem
more suitable for XLT in English-centric LLMs
than English. Furthermore, while an increased ty-
pological distance appears to adversely affect XLT,
a higher typological relatedness does not consis-
tently entail enhanced XLT.

However, given the limitations of the experimen-
tal setup, further investigation is required to sub-
stantiate the tentative conclusions. Accordingly, as
this work progresses, the following variables will
be assessed: Further base LLMs encompassing
more multilingual pre-training data (Llama 3 and
3.1), further adapter methods (LoRA and Prompt
Tuning are considered, as they differ in architec-
ture and required parametric cost), a cleaner NLG
dataset to assess the impact of potentially noisy
task data, and multilingual LAs (and TAs) similar
to Parović et al. (2022).
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A Training Details

Hyperparameter Value

LAs

Reduction factor 16
Batch size 4
Training steps 50k
Context (in tokens) 1024

MLQA-en TAs

Reduction factor 16
Batch size 4
Training epochs 3

SIB-200 TAs

Reduction factor 16
Batch size 4
Training epochs 20

Table 3: Details for training LAs and TAs. These values
apply to all languages. I.e., LAs are trained on 200k
samples per language à 1024 tokens. Unspecified hyper-
parameters were set to the default values as provided in
the adapters and transformers library.

B Languages

Germanic

English en
German de
Dutch nl
Swedish sv
Danish da
Icelandic is
Afrikaans af

Romance

Spanish es
Portuguese pt
Catalan ca
Galician gl

Finno-Ugric

Finnish fi
Hungarian hu

Table 4: Languages used for LA training and evaluation.

C Llama 2 Language Distribution

Language Data (in %)

en 90.00
de 0.17
sv 0.15
es 0.13
nl 0.12
pt 0.09
ca 0.04
fi 0.03
hu 0.03
da 0.02
is 0.00
gl 0.00
af 0.00

Table 5: Amounts of pre-training data in Llama 2 for
languages relevant to this work.

D Fertility

Language Fertility

en 1.45
de 2.04
sv 2.21
es 1.77
nl 2.00
pt 1.92
ca 1.96
fi 3.75
hu 3.00
da 2.22
is 3.03
gl 1.97
af 2.11

Table 6: Fertility (token/word ratio) as measured on the
dev split of Flores-200 (Team et al., 2022) using the
English-centric tokenizer of Llama 2.



E Further Results

E.1 F1 Scores with Standard Deviation

Setup af gl is da fi hu ca

LAen 0.42 (±0.01) 0.46 (±0.03) 0.2 (±0.04) 0.3 (±0.06) 0.22 (±0.01) 0.28 (±0.03) 0.41 (±0.05)
LAde 0.47 (±0.01) 0.51 (±0.01) 0.29 (±0.02) 0.45 (±0.01) 0.35 (±0.01) 0.4 (±0.01) 0.51 (±0.02)
LAes 0.44 (±0.02) 0.52 (±0.01) 0.29 (±0.02) 0.45 (±0.02) 0.33 (±0.01) 0.38 (±0.02) 0.53 (±0.01)
noLAen 0.41 (±0.03) 0.43 (±0.05) 0.16 (±0.02) 0.42 (±0.04) 0.26 (±0.02) 0.31 (±0.03) 0.51 (±0.02)
noLAde 0.41 (±0.01) 0.44 (±0.0) 0.2 (±0.01) 0.49 (±0.01) 0.35 (±0.0) 0.41 (±0.01) 0.53 (±0.01)
noLAes 0.38 (±0.01) 0.4 (±0.01) 0.18 (±0.01) 0.44 (±0.01) 0.3 (±0.01) 0.35 (±0.01) 0.47 (±0.02)

Setup pt nl es sv de en avg.

LAen 0.44 (±0.03) 0.45 (±0.02) 0.4 (±0.03) 0.34 (±0.08) 0.45 (±0.01) 0.78 (±0.0) 0.40
LAde 0.5 (±0.01) 0.5 (±0.02) 0.45 (±0.0) 0.45 (±0.01) 0.52 (±0.01) 0.45 (±0.11) 0.45
LAes 0.51 (±0.01) 0.48 (±0.01) 0.53 (±0.01) 0.44 (±0.01) 0.46 (±0.01) 0.52 (±0.04) 0.45
noLAen 0.49 (±0.03) 0.5 (±0.02) 0.41 (±0.04) 0.43 (±0.02) 0.46 (±0.02) 0.78 (±0.0) 0.43
noLAde 0.52 (±0.01) 0.44 (±0.02) 0.46 (±0.0) 0.46 (±0.01) 0.53 (±0.0) 0.38 (±0.01) 0.43
noLAes 0.5 (±0.01) 0.46 (±0.01) 0.53 (±0.01) 0.42 (±0.01) 0.43 (±0.01) 0.39 (±0.08) 0.40

Table 7: MLQA-en F1 avg. scores over five random seeds. Standard deviation in parentheses. Underlined marks the
best score within setting (LA or noLA), bold marks the best score between settings.

Setup af gl is da fi hu ca

LAen 0.51 (±0.15) 0.74 (±0.07) 0.31 (±0.09) 0.65 (±0.09) 0.48 (±0.1) 0.48 (±0.1) 0.62 (±0.13)
LAde 0.72 (±0.04) 0.76 (±0.07) 0.54 (±0.09) 0.77 (±0.02) 0.68 (±0.06) 0.74 (±0.03) 0.75 (±0.07)
LAes 0.7 (±0.05) 0.79 (±0.02) 0.56 (±0.07) 0.79 (±0.07) 0.64 (±0.06) 0.69 (±0.13) 0.76 (±0.11)
noLAen 0.66 (±0.04) 0.76 (±0.04) 0.35 (±0.05) 0.72 (±0.04) 0.55 (±0.1) 0.63 (±0.06) 0.79 (±0.06)
noLAde 0.78 (±0.03) 0.81 (±0.04) 0.52 (±0.05) 0.83 (±0.01) 0.76 (±0.04) 0.8 (±0.04) 0.84 (±0.02)
noLAes 0.75 (±0.03) 0.81 (±0.03) 0.45 (±0.04) 0.79 (±0.03) 0.68 (±0.07) 0.76 (±0.04) 0.86 (±0.03)

Setup pt nl es sv de en avg.

LAen 0.77 (±0.04) 0.77 (±0.05) 0.8 (±0.02) 0.7 (±0.05) 0.79 (±0.05) 0.86 (±0.02) 0.65
LAde 0.78 (±0.07) 0.82 (±0.02) 0.81 (±0.02) 0.77 (±0.07) 0.85 (±0.02) 0.78 (±0.14) 0.75
LAes 0.83 (±0.03) 0.82 (±0.02) 0.82 (±0.03) 0.81 (±0.03) 0.82 (±0.03) 0.74 (±0.14) 0.75
noLAen 0.83 (±0.03) 0.77 (±0.02) 0.83 (±0.04) 0.74 (±0.05) 0.8 (±0.03) 0.85 (±0.03) 0.71
noLAde 0.85 (±0.03) 0.86 (±0.02) 0.82 (±0.01) 0.83 (±0.01) 0.87 (±0.03) 0.85 (±0.02) 0.80
noLAes 0.86 (±0.03) 0.85 (±0.03) 0.84 (±0.01) 0.81 (±0.03) 0.82 (±0.02) 0.83 (±0.04) 0.78

Table 8: SIB-200 F1 avg. scores over five random seeds. Standard deviation in parentheses. Underlined marks the
best score within setting (LA or noLA), bold marks the best score between settings.



E.2 Exact Match Scores with Standard Deviation

Setup af gl is da fi hu ca

LAen 0.21 (±0.02) 0.26 (±0.03) 0.07 (±0.02) 0.13 (±0.04) 0.08 (±0.01) 0.14 (±0.03) 0.2 (±0.04)
LAde 0.24 (±0.02) 0.28 (±0.02) 0.13 (±0.02) 0.25 (±0.02) 0.17 (±0.01) 0.25 (±0.02) 0.27 (±0.02)
LAes 0.19 (±0.03) 0.25 (±0.01) 0.14 (±0.02) 0.23 (±0.02) 0.16 (±0.01) 0.23 (±0.01) 0.25 (±0.02)
noLAen 0.23 (±0.02) 0.25 (±0.03) 0.07 (±0.02) 0.24 (±0.04) 0.11 (±0.02) 0.18 (±0.02) 0.3 (±0.01)
noLAde 0.22 (±0.01) 0.24 (±0.01) 0.09 (±0.01) 0.3 (±0.01) 0.17 (±0.0) 0.26 (±0.01) 0.3 (±0.01)
noLAes 0.16 (±0.02) 0.14 (±0.01) 0.06 (±0.01) 0.22 (±0.02) 0.13 (±0.01) 0.19 (±0.02) 0.19 (±0.04)

Setup pt nl es sv de en avg.

LAen 0.22 (±0.03) 0.29 (±0.07) 0.16 (±0.05) 0.15 (±0.05) 0.28 (±0.06) 0.67 (±0.06) 0.22
LAde 0.26 (±0.01) 0.29 (±0.01) 0.16 (±0.0) 0.23 (±0.01) 0.33 (±0.01) 0.25 (±0.11) 0.24
LAes 0.24 (±0.01) 0.23 (±0.02) 0.26 (±0.01) 0.22 (±0.02) 0.23 (±0.02) 0.24 (±0.06) 0.22
noLAen 0.27 (±0.02) 0.32 (±0.02) 0.14 (±0.02) 0.24 (±0.02) 0.27 (±0.02) 0.65 (±0.01) 0.25
noLAde 0.28 (±0.01) 0.26 (±0.01) 0.17 (±0.01) 0.26 (±0.01) 0.33 (±0.01) 0.25 (±0.02) 0.24
noLAes 0.24 (±0.02) 0.23 (±0.02) 0.25 (±0.01) 0.2 (±0.02) 0.2 (±0.03) 0.15 (±0.05) 0.18

Table 9: MLQA-en Exact Match scores over five random seeds. Standard deviation in parentheses. Underlined
marks the best score within setting (LA or noLA), bold marks the best score between settings.

Setup af gl is da fi hu ca

LAen 0.49 (±0.17) 0.73 (±0.08) 0.3 (±0.1) 0.65 (±0.09) 0.47 (±0.11) 0.48 (±0.1) 0.61 (±0.15)
LAde 0.72 (±0.04) 0.76 (±0.07) 0.52 (±0.11) 0.77 (±0.02) 0.67 (±0.07) 0.73 (±0.03) 0.75 (±0.07)
LAes 0.69 (±0.05) 0.79 (±0.03) 0.55 (±0.08) 0.79 (±0.07) 0.64 (±0.06) 0.69 (±0.14) 0.75 (±0.11)
noLAen 0.66 (±0.04) 0.76 (±0.04) 0.35 (±0.05) 0.72 (±0.04) 0.55 (±0.1) 0.63 (±0.06) 0.79 (±0.06)
noLAde 0.78 (±0.03) 0.81 (±0.04) 0.52 (±0.05) 0.83 (±0.01) 0.76 (±0.04) 0.8 (±0.04) 0.84 (±0.02)
noLAes 0.75 (±0.03) 0.81 (±0.03) 0.45 (±0.04) 0.79 (±0.03) 0.68 (±0.07) 0.76 (±0.04) 0.86 (±0.03)

Setup pt nl es sv de en avg.

LAen 0.77 (±0.04) 0.77 (±0.05) 0.79 (±0.02) 0.69 (±0.05) 0.79 (±0.05) 0.86 (±0.02) 0.65
LAde 0.78 (±0.07) 0.82 (±0.03) 0.81 (±0.02) 0.76 (±0.08) 0.85 (±0.02) 0.77 (±0.15) 0.75
LAes 0.83 (±0.03) 0.82 (±0.02) 0.82 (±0.03) 0.81 (±0.02) 0.82 (±0.03) 0.73 (±0.15) 0.75
noLAen 0.83 (±0.03) 0.77 (±0.02) 0.83 (±0.04) 0.74 (±0.05) 0.8 (±0.03) 0.85 (±0.03) 0.71
noLAde 0.85 (±0.03) 0.86 (±0.02) 0.82 (±0.01) 0.83 (±0.01) 0.87 (±0.03) 0.85 (±0.02) 0.80
noLAes 0.86 (±0.03) 0.85 (±0.03) 0.84 (±0.01) 0.81 (±0.03) 0.82 (±0.02) 0.83 (±0.04) 0.78

Table 10: SIB-200 Exact Match scores over five random seeds. Standard deviation in parentheses. Underlined
marks the best score within setting (LA or noLA), bold marks the best score between settings.



F Task Templates

MLQA-en

### Human: Refer to the passage below and then answer the question afterwards
in the same language as the passage:

Passage: {passage}

Question: {question}

### Assistant: {answer}

Figure 1: Task template used for training MLQA-en TAs. Instructions and labels are provided in the respective
language.

SIB-200

Classify the following sentence into one of the following topics:
1. science/technology
2. travel
3. politics
4. sports
5. health
6. entertainment
7. geography

Sentence: {sentence}

Topic: {topic}

Figure 2: Task template used for training SIB-200 TAs. Instructions and labels are provided in English only.



G Training & Evaluation Setups

G.1 LA Setup

Figure 3: LA setup (blue and red edges indicate frozen and trainable parameters,
respectively): (1) Language adapters are trained for each language of interest (here:
English and Icelandic) on a frozen English-centric LLM (e.g., Llama 2 7B, as used
in this work). (2) A task adapter (in this case, for a QA task) is trained in the source
language (here: English) by stacking it on top of the frozen language adapter in the
respective source language. (3) During inference, the source language adapter is
replaced by the target language adapter (here: Icelandic) while retaining the task
adapter in the source language. This setup is then evaluated zero-shot in the target
language.

G.2 noLA Setup

Figure 4: noLA setup (blue and red edges indicate
frozen and trainable parameters, respectively): (1) A
task adapter (in this case, for a QA task) is trained in
the source language (here: English) on top of the frozen
English-centric LLM. (2) During inference, the task
adapter in the source language is retained and evaluated
zero-shot in the target language (here: Icelandic).
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