Towards Multilingual Autoformalization and Informalization of
Mathematics

Aarne Ranta
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg
aarne.ranta@cse.gu.se

Abstract

Recent advances of Al in mathematics, such
as AlphaProof’s solutions of Mathematics
Olympiad problems, combine large language
models, which suggest solutions, with formal
proof systems, which verify them. Conversion
between formal and informal mathematical lan-
guage is an essential part of this process. In
AlphaProof, it is performed manually. This
paper addresses the problem and reports pre-
liminary results, building an automatic formal-
ization system by combining grammar rules
and data-driven parsing, and using Wikidata as
a source of mathematical terminology.

1 Introduction

Mathematics is getting increasing attention in Arti-
ficial Intelligence. While undoubtedly an essential
part of humans intelligence, mathematical reason-
ing is difficult for purely data-driven methods such
as neural networks (Roberts, 2023). The problem is
precision and reliability: just like a chess program
is useless if it does not obey the rules of chess,
mathematical reasoning is useless if it does not
obey the rules of mathematics.

A solution is offered by formal mathematics,
systems that express mathematical reasoning in a
formal language where correctness can be checked
mechanically. A way to combine such systems
with, for instance, large language models (LLMs),
is to let the LLLM generate solutions in a formal
language and the formal system check them un-
til a correct solution is found. One such system,
AlphaProof, was recently used for solving prob-
lems in the Mathematics Olympiad (AlphaProof
and AlphaGeometry teams, 2024). In AlphaProof,
a pre-trained LLM interacts with the formal proof
system Lean (de Moura et al., 2015).

Solving a problem by AlphaProof starts by trans-
lating natural language problem statements into the
formal language used in Lean. This step is per-
formed manually, which is a drawback. Another

drawback is the lack of training material: while
most existing mathematics is written in natural lan-
guages (mixed with mathematical symbols), using
these texts without a precise connection to formal-
ized mathematics does not guarantee correctness.

In this paper, we will outline a solution to
the problem and present some preliminary results.
Translation from informal to formal is known as
autoformalization. The opposite direction can be
called informalization. In the emerging project
Informath, Informalization of Formal Mathematics,
we are looking at both directions, by treating aut-
oformalization as the inversion of informalization.
In this paper, we will summarize an experimental
system aimed to translate a corpus of real-world
mathematical texts from English to Lean as well as
to some other formal and natural languages.

2 Autoformalization and informalization

The topic of translation between formal and in-
formal mathematics is not new (de Bruijn, 1994;
Ranta, 1994; Coscoy et al., 1995). The original
goal was to enable formal proof systems to be
accessed via natural language. Early approaches
used rule-based methods such as formal grammars,
defining controlled natural languages (CNLs).

The term autoformalization came later, in con-
nection to data-driven Al methods. A pioneering
work is Wang et al. (2020), which uses neural
machine translation. A recent approach, GFLean
(Pathak, 2024), uses rule-based methods again: the
Grammatical Framework (GF, Ranta, 2011; Ranta
et al., 2020) in combination with formal semantics
of Montague style (Montague, 1974).

GFLean uses GF for parsing ForTheL. (Paske-
vich, 2007), an English-like CNL for mathematics.
The resulting syntax trees are converted to logical
representations, from which Lean code is produced
by linearization (converting trees to strings) by GF.
Figure 1 shows the architecture of GFLean and an

example formalization.

The Informath project reported in this paper ex-
tends GFLean in the following ways:

* The syntax of ForTheL is extended to cover
more constructs, guided by existing mathe-
matical texts.

* The grammar is made multilingual, so that it
addresses multiple natural languages instead
of just English.

* The system supports both formalization and
informalization.

* The syntax is combined with an extensive lex-
icon of mathematical terms.

The architecture of Informath is shown in Figure 1
(c). It can be seen as a magnified picture of Figure 1
(a), where the English CNL is generalized to a
multilingual natural language component, and the
target language Lean is generalized to an abstract
logical representation, which can be related to other
systems of formal mathematics as well.

Informath aims to grow beyond CNL and ap-
proach arbitrary mathematical text. As a first step,
we have extended the ForTheL syntax so that we
can parse the original statements from Chartrand
et al. (2007) instead of manually translating them
to ForTheL. For example, to cover Figure 1 (b), we
extended the syntax of English with noun phrase
coordination and post-quantification and the syn-
tax of mathematical symbolism with operatorless
multiplication. Via the abstract syntax, the parse
tree can be converted to Lean by the same semantic
rules as in original GFLean. The ForTheL. CNL
thus plays the role of the “core abstract syntax” of
Figure 1 (c).

3 Mathematical syntax and terminology

The grammar of natural language in Informath uses
the GF Resource Grammar Library (RGL, Ranta,
2009), which provides functions for the morphol-
ogy and surface syntax of over 40 languages. It can
be used via a functor, where the shared syntactic
structure of the RGL are combined with language-
specific morphological rules and lexical entries. To
add a new language, just a lexical rule needs to be
added. For example, the predicate “x is even” need
a translation of the adjective even, whereas the syn-
tactic rule for adjectival predication is uniformly
defined by the functor. The resulting grammar can
both parse and generate the predicate in different
comninations and forms, such as om x och y dr
jdmna, sa dr summan av x och y jamn (Swedish for

if x and y are even, then the sum of x and y is even).

The syntax of mathematical texts, with its mix-
ture of natural language of symbols, is a challenge
in itself (Ganesalingam, 2013). But it can be largely
covered by a few hundred GF functions; the exten-
sion of ForTheL reported here has around 100 ab-
stract syntax functions. The bulk of mathematical
language is terminology: the precise expressions
for mathematical concepts such as sets, functions,
and algebraic structures. In this respect, mathemat-
ics is similar to other domains of knowledge, such
as medicine or law.

Terminology is also in focus when teaching and
documenting knowledge. For instance, a typical
Wikipedia article has a technical term as its title,
and the articles in different languages have corre-
sponding terms of those languages as their titles.
These correspondences have been encoded in Wiki-
data (Vrandeci¢ and Krotzsch, 2014), where every
concept has a unique identifier and a set of labels
in different languages.

In mathematics, a typical use of a term is as the
definiens of a definition, such as Abelian group in
Figure 2. Definitions are typically stated at the be-
ginning of Wikipedia articles. One of the outcomes
of Informath, in addition to autoformalization, is
to contribute to the Abstract Wikipedia project,
which generates articles from formal representa-
tions (Vrandeci¢, 2021; Ranta, 2023). A larger set
of examples is given in Appendix C.

4 Terminology extraction

We have developed a conversion from Wikidata
labels to grammar rules in GF. These rules have
to implement both morphology and syntax. Mor-
phology specifies the inflection words, as well as
their properties such as part of speech and gen-
der. Syntax specifies the structure needed for the
correct use of these features. For example, the
term groupe abélien in French is a combination of
a masculine noun and an adjective. Both gender
and number agreement are needed: the plural is
groupes abéliens. Our conversion enriches the raw-
text Wikidata labels with enough information to
determine all this behaviour.

The conversion is a combination of GF and
Universal Dependencies (UD, (de Marneffe et al.,
2021)). It covers all steps from Wikidata to GF
grammars: it first parses the labels with UD to ex-
tract lemmas and parts of speech and extends the
standard GF grammar with new entries obtained in

(a)

abstract syntax

linearization abstract syntax formal semantics
Lean [¢——— <
of Lean

(b)

parsing
(<+——| English

of ForTheL

Theorem 14 (Exercise 3.10). If a and c are odd integers, then ab + ac is even for every integer b.

Ex. Assume a is an odd integer and c is an odd integer. Then for every integer b,

a *b+ a*c is even.

example (a : Z) (h78 : odd a) (c : Z) (h57 : odd c) :
V (b : Z), even ((a * b) + (a * ¢)) := sorry
(©)
\ formal informalization informal 2
core type ; core
v syniax

extensions of the core

formalization

~ - machine learning

human interaction —)

extensions of the core

o]

Figure 1: (a) The system GFLean translating the ForTheL fragment of English to the formal proof system Lean.
Solid arrowheads indicated total functions, hollow arrowheads partial functions.

(b) An example of GFLean, formalizing a statement from a textbook (Chartrand et al., 2007). The first line is the
original statement. The second line is its manual conversion to ForTheL. The rest is the automatically generated
formalization in Lean. (Notice that there is a typo in the statement: it should say ab + bc.)

(c) The big picture of the Informath project.

this process. Then it parses the labels with with the
extended GF grammar and generates GF modules
for the Wikidata terms. More details of this process
are given in Appendix B.

5 Evaluation

Coverage. Table 1 shows the number of extracted
terms from 5381 Wikidata labels in 8 languages.
These labels cover the 683 concepts of an unde-
graduate mathematics curriculum in the MathGloss
project (Horowitz and de Paiva, 2023), extended
with various SPARQL searches in Wikidata. The
coverage of labels varies greatly among languages.
This can only be improved by extending the cover-
age of Wikidata itself. Even if the labels are given,
the current GF parser is not yet complete. This can
be improved by extending the GF grammar and
by making better use of the UD parse trees with
methods described in Ranta et al. (2020).

The coverage of the syntax part is an extension
of the ForTheL fragment of Pathak (2024) and man-
ages to parse a majority of the original statements
from Chartrand et al. (2007). An obvious way to

language | labels covered successful parses

Eng 5188 96% | 3872 74%
Fin 834 15% | 328 39%
Fre 3230 60% | 2199 68%
Ger 2956 54% | 2609 88%
Ita 2019 37% | 1390 68%
Por 2858 53% | 1717 60%
Spa 2322 43% | 1633 70%
Swe 1345 24% | 826 61%

Table 1: The coverage of Wikidata labels and their suc-
cessful GF parses for different languages. The total
amount of Wikidata items is 5381.

English: An Abelian group is a group whose binary operation is commutative.
Abstract syntax: ParDefinition (DefWhose (KindQN abelian_group_Q181296_QN)
(KindQN group_Q83478_QN) (KindQN binary_operation_Q164307_QN) commutative_Property)

Lean: def Abelian_group := {x :

Group // (Commutative (binary_operation x))}

Finnish: Abelin ryhmi on ryhm4, jonka binéddrioperaatio on kommutatiivinen.

French: Un groupe abélien est un groupe dont 1’opération binaire est commutative.

German: Eine abelsche Gruppe ist eine Gruppe, deren zweistellige Verkniipfung kommutativ ist.
Italian: Un gruppo abeliano € un gruppo di cui operazione binaria € commutativa.

Swedish: En abelsk grupp ér en grupp vars binira operator dr kommutativ.

Figure 2: An autoformalization and some translations of a definition, obtained by parsing the English statement and
linearizing it to the other formats. The abstract syntax segments of the form “Q‘“* are Wikidata identifiers, and their
linearizations in different languages have been derived from Wikidata labels.

extend it is to extend the GF grammar; however,
also a more robust data-driven method could be
considered (Ranta et al., 2020).

Quality. The accuracy of the extracted terms
has only been evaluated by an ocular inspection
of examples. It is dependent on the quality of the
Wikidata labels, which, in the mathematics domain,
seems to be relatively high. It also depends on the
quality of the GF grammars used for extraction;
in particular, the morphological properties of new
words that only appear once in the material are just
educated guesses using GF’s “smart paradigms”
(Détrez and Ranta, 2012).

In syntax, the main challenge is ambiguity: aut-
oformalization with GF grammars, even with the
relatively small one we have now, may result in
numerous parse trees. In a thorough analysis of
the language of mathematics, Ganesalingam (2013)
suggests that syntactic ambiguity is unavoidable,
but that it is always resolved by semantic clues.
Piping syntactic parses into a formal proof system
provides one way to do this.

Workload. A common worry about rule-based
methods is that they require manual work. How-
ever, if high precision is needed, as in mathematics,
even the best data-driven methods require manual
work in checking the machine-generated output.
Then it makes sense to work on rules that can be
improved so that the need of manual checking con-
tinuously decreases.

The best of both worlds is to let data-driven meth-
ods produce rules, which a human can improve
without having to produce them from scratch. This
is what we do in the derivation of lexical rules from
Wikidata labels using UD parsing. The program-
ming effort for the reported system (by the author)
was two weeks. Each new language was added in
a couple of hours and just 10% language-specific
rules (see Appendix A). This was of course only
possible thanks to the existing RGL, where adding

a language typically requires a few months of work.
But this work is amortized as the RGL is used in
new applications.

6 Conclusion

We have shown some early results from the project
Informath, Informalization of Formal Mathematics.
The project applies GF grammars to target multiple
natural and formal languages. The experiment re-
ported here had as its starting point the controlled
language ForThel. as used in the project GFLean,
which translates a fragment of English to the proof
system Lean. We extended the grammar to auto-
formalize the original textbook statements used in
GFLean without manual conversion. We also gener-
alized it to eight natural languages, using Wikidata
labels as the source of a multilingual terminology.
The goal of Informath is to provide a reliable re-
source for translating between formal and informal
mathematics. It aims to help users of proof systems,
Wikipedia users wanting to read about mathematics
in their own languages, and Al systems that need
to convert between formal and informal languages
when solving mathematical problems.

Acknowledgements

Much of the work in this paper was done during
a four-week stay at Hausdorff Institute for Mathe-
matics in Bonn during the trimester “Prospects of
Formal Mathematics” in July 2024. I am grateful
to the institute and the organizers for the invitation
and financial support. The work would not have
been possible without the exchange of ideas with
other participants. Lucy Horowitz, Jan Frederik
Schaefer, Peter Koepke, and Shashank Pathak pro-
vided the material used for building the experiment
and evaluating it. Hans Leif3, Josef Urban, Marcel
Schiitz, Mario Carneiro, Michael Kohlhase, Paul-
André Mellies, and Valeria de Paiva helped with
their expertise, ideas, and challenging questions.

References

AlphaProof and AlphaGeometry teams. 2024. Al
achieves silver-medal standard solving International
Mathematical Olympiad problems.

G. Chartrand, A. D. Polimeni, and P. Zhang. 2007.
Mathematical Proofs. Pearson.

Y. Coscoy, G. Kahn, and L. Thery. 1995. Extracting
text from proofs. In Proc. Second Int. Conf. on Typed
Lambda Calculi and Applications, volume 902 of
LNCS, pages 109-123.

Marcos Cramer, Bernhard Fisseni, Peter Koepke, Daniel
Kiihlwein, Bernhard Schroder, and Jip Veldman.
2009. The Naproche Project Controlled Natural
Language Proof Checking of Mathematical Texts.
In CNL, volume 5972 of LNCS, pages 170-186.
Springer.

N. G. de Bruijn. 1994. Mathematical Vernacular: a Lan-
guage for Mathematics with Typed Sets. In R. Ned-
erpelt, editor, Selected Papers on Automath, pages
865-935. North-Holland Publishing Company.

Marie-Catherine de Marneffe, Christopher D. Man-
ning, Joakim Nivre, and Daniel Zeman. 2021. Uni-
versal Dependencies. Computational Linguistics,
47(2):255-308.

Leonardo de Moura, Soonho Kong, Jeremy Avigad,
Floris van Doorn, and Jakob von Raumer. 2015. The
lean theorem prover (system description). In Auto-
mated Deduction - CADE-25, pages 378-388, Cham.
Springer International Publishing.

G. Détrez and A. Ranta. 2012. Smart paradigms and
the predictability and complexity of inflectional mor-
phology. In EACL 2012.

Mohan Ganesalingam. 2013. The Language of Mathe-
matics: A Linguistic and Philosophical Investigation.

Springer.

Lucy Horowitz and Valeria de Paiva. 2023. Mathgloss:
Building mathematical glossaries from text. Preprint,
arXiv:2311.12649.

R. Montague. 1974. Formal Philosophy. Yale Univer-
sity Press, New Haven. Collected papers edited by
Richmond Thomason.

Andrei Paskevich. 2007. The Syntax and Semantics of
The ForTheL Language.

Shashank Pathak. 2024. GFLean: An Autoformal-
isation Framework for Lean via GF. Preprint,
arXiv:2404.01234.

L. Paulson. 2002. The Isabelle Reference Manual.
Available at the Isabelle homepage. With contribu-
tions by T. Nipkow and M. Wenzel.

Aarne Ranta. 1994. Type theory and the informal
language of mathematics. In Selected papers from
TYPES’93: Int. Workshop on Types, Nijmegen, The
Netherlands, volume 806 of LNCS, pages 352-365.
Springer-Verlag.

Aarne Ranta. 2009. The GF Resource Grammar Library.
Linguistics in Language Technology, 2.

Aarne Ranta. 2011. Grammatical Framework: Pro-
gramming with Multilingual Grammars. CSLI Publi-
cations, Stanford.

Aarne Ranta. 2023. Multilingual text generation
for abstract wikipedia in grammatical framework:
Prospects and challenges. In Logic and Algorithms in
Computational Linguistics 2021 (LACompLing2021),
pages 125-149, Cham. Springer Nature Switzerland.

Aarne Ranta, Krasimir Angelov, Normunds Gruzitis,
and Prasanth Kolachina. 2020. Abstract Syntax as
Interlingua: Scaling Up the Grammatical Frame-
work from Controlled Languages to Robust Pipelines.
Computational Linguistics, 46(2):425-486.

Siobhan Roberts. 2023. A.IL. Is Coming for Mathemat-
ics, Too. The New York Times.

Denny Vrandeci¢. 2021. Building a Multilingual
Wikipedia. Communications of the ACM, 64(4):38—
41.

Denny Vrandeci¢ and Markus Krotzsch. 2014. Wiki-
data: A free collaborative knowledgebase. Commun.
ACM, 57(10):78-85.

Qingxiang Wang, Chad Brown, Cezary Kaliszyk, and
Josef Urban. 2020. Exploration of neural machine
translation in autoformalization of mathematics in
mizar. In Proceedings of the 9th ACM SIGPLAN
International Conference on Certified Programs and
Proofs, CPP 2020, page 85-98, New York, NY, USA.
Association for Computing Machinery.

A The grammars

The experiment reported in this paper involves two
grammars: one for lexicon extraction and another
for the runtime, i.e., the actual formalization and
informalization if mathematical texts.

The extraction grammar parses Wikipedia labels
and finds their syntactic structure. Terms are typ-
ically multiword expressions. When used in dif-
ferent contexts, it is essential to know their syn-
tactic structure, to know the behaviour of each
word in them. The results of lexicon extraction
are collected to a multilingual lexicon of mathemat-
ical terms, where the abstract syntax functions are
named after Wikidata identifiers, to which English
labels are added for readability. Some examples
are shown in Figure 2. The size of the extracted
lexicon is shown in Table 1, where the “success-
ful parse” column indicates the coverage of the
extraction grammar.

The grammar used at runtime combines the ex-
tracted lexicon with a syntax part, which is an ex-
tension of ForTheL. The syntax part has at the time

https://deepmind.google/discover/blog/ai-solves-imo-problems-at-silver-medal-level/
https://deepmind.google/discover/blog/ai-solves-imo-problems-at-silver-medal-level/
https://deepmind.google/discover/blog/ai-solves-imo-problems-at-silver-medal-level/
https://arxiv.org/abs/2311.12649
https://arxiv.org/abs/2311.12649
http://nevidal.org/download/forthel.pdf
http://nevidal.org/download/forthel.pdf
https://arxiv.org/abs/2404.01234
https://arxiv.org/abs/2404.01234
http://www.cl.cam.ac.uk/Research/HVG/Isabelle/
https://doi.org/10.1162/coli_a_00378
https://doi.org/10.1162/coli_a_00378
https://doi.org/10.1162/coli_a_00378
https://www.nytimes.com/2023/07/02/science/ai-mathematics-machine-learning.html
https://www.nytimes.com/2023/07/02/science/ai-mathematics-machine-learning.html
https://cacm.acm.org/magazines/2021/4/251343-building-a-multilingual-wikipedia/fulltext
https://cacm.acm.org/magazines/2021/4/251343-building-a-multilingual-wikipedia/fulltext
https://doi.org/10.1145/2629489
https://doi.org/10.1145/2629489
https://doi.org/10.1145/3372885.3373827
https://doi.org/10.1145/3372885.3373827
https://doi.org/10.1145/3372885.3373827

of writing 78 combination functions. In addition,
there are 57 functions for mathematical symbol-
ism, which is linearized in the same way in all
languages.

Following a usual pattern in GF, the syntax part
is implemented via a functor, which maps the se-
mantic structures of the application to the abstract
syntactic structures of the RGL. The RGL imple-
ments these structures separately for each individ-
ual language, so that in an application such as Infor-
math, no language-specific code needs to be written.
However, languages might still use different syn-
tactic structures for particular semantic structures.
To deal with this, a functor can in each language
have exceptions, which override the shared imple-
mentation. For example, the universal quantifier
phrase all functions resulting from the functor is
in French (and some other languages) overridden
by a rule that inserts a definite article: foutes les
fonctions.

Due to functors, both the extraction and the for-
malization grammar require very few hand-written
rules. By counting the number of exceptions and
additions to the functor, we can estimate the need
of manual work in them. The following table gives
the number of rules explicitly written in each parts
of the grammar. For “functor”, this means the num-
ber of language-independent definitions in terms
of RGL functions. For each individual language,
this means the number of exceptions to the functor.
The numbers imply that around 90% of rules in
each language are shared in both tasks, and have
therefore not required any manual work.

language | Extract | ForTheL
functor 21 133
Eng 2 11
Fin 2 14
Fre 3 16
Ger 2 21
Ita 3 15
Por 3 15
Spa 3 17
Swe 2 20

B The lexicon extraction process

The following run of the lexicon extraction script
(written in Python) adds German to the grammar.
On a Macbook Air M2 2023, it runs in less than
30 seconds. Most messages have been omitted, but
the most relevant statistics output is left.

$ time ./build_lexicon.py -add de Ger

*

Step 1: Extracting Wikidata labels
statistics terms: 5381

statistics no label: 2425

Step 2: Parsing data with UDPipe

Step 3: Analysing data with UD results
statistics case fixed: 207

statistics words from UD: 2691

Step 4: Building lexicon extension
statistics given morphofuns: 44227
statistics new extracted morphofuns: 2472
* Step 5: Parsing with GF

statistics successful GF parses: 2527
statistics failed GF parses: 429

Step 7: add a new concrete syntax

Step 8: testing the grammar in GF
MathTerms: cubic_graph_Q1374495_CN

* %

*

* %

MathTermsGer: s Strong Sg Nom : kubischer Graph
MathTermsGer: s Strong Sg Acc : kubischen Graph
MathTermsGer: s Strong Sg Dat : kubischem Graph
MathTermsGer: s Strong Sg Gen : kubischen Graphs
MathTermsGer: s Strong Pl Nom : kubische Graphe
MathTermsGer: s Strong Pl Acc : kubische Graphe
MathTermsGer: s Strong Pl Dat : kubischen Graphen
MathTermsGer: s Strong Pl Gen : kubischer Graphe
MathTermsGer: s Weak Sg Nom : kubische Graph

... plus 15 more forms of common noun phrases
13.74s user 0.99s system 52% cpu 28.097 total
The code, both for grammars and Python scripts, is
available in https://github.com/aarneranta/
gf-math.

C Examples from “100 theorems”

The following ten subsections are a sample of the
“100 greatest theorems”, which have been used as a
a benchmark for formal systems of mathematics'.
We show it here instead of the GFLean corpus,
because it is an independent set of examples, for
which the grammar was not originally designed.
It also has more terminological variation and is
thereby a better illustration of the extracted termi-
nology.

This sample has been formalized in the
Naproche system (Cramer et al., 2009), which uses
a version of ForTheL combined with I&IEX as its in-
put language and translates it to the Isabelle proof
system (Paulson, 2002). In our experiment, we
parsed the English theorem statements with the In-
formath grammar. The resulting abstract syntax
was linearized to eight languages: English (identi-
cal to the input), Finnish, French, German, Italian,
Portuguese, Spanish, and Swedish, which in each
subsection are shown in this order. Since the gram-
mars are reversible, each of the languages could
equally well be used as an input of formalization
in Isabelle. The text below is the unedited output
of the system, and the readers are invited to spot
errors in their own languages.

lhttps://www.cs.ru.n1/~freek/100/

https://github.com/aarneranta/gf-math
https://github.com/aarneranta/gf-math
https://www.cs.ru.nl/~freek/100/

[y

g* = p for no positive rational number ¢.

¢* = p millekiin positiiviselle luvulle g.

¢* = p pour aucun nombre rationnel positif ¢.
2 — p fiir keine positive rationale Zahl q.

2 — p per nessuno numero razionale positivo g.
¢* = p para nenhum niimero racional positivo g.
2 — p para ningiin niimero racional positivo g.

2

q~ = p for inget positivt rationellt tal g.

2

The collection of prime numbers is infinite.
Kokoelma alkulukuja on déreton.

La collection de nombres premiers est infinie.
Die Gesamtheit von Primzahlen ist unendlich.
La collezione di numeri primi ¢ infinita.

O collection de nimeros primos € infinito.

La coleccién de niimeros primos es infinita.
Samlingen av primtal &r odndlig.

3

Let x, y be sets. x and y are equinumerous iff there
exists a injective map from x to y and there exists
an injective map from y to x.

Olkoot x, y joukkoja. x ja y ovat yhtimahtavia jos
ja vain jos on olemassa injektiivinen kuvaus x:sta
y:an ja on olemassa moduli kuvaus y:sta x:an.
Soient x, y des ensembles. x et y sont équinom-
breux si et seulement si il existe une correspon-
dance injective de x a y et il existe une application
injective de y a x.

Seien x, y Mengen. x und y sind gleichzahlig wenn
und genau dann wenn es eine injektive Abbildung
aus x nach y gibt und es eine injektive Abbildung
aus y nach x gibt.

Siano insiemi X, y. x € y Sono equinumerosi se e
solo se esiste una mappa iniettiva da x a y ed esiste
una mappa iniettiva da y a x.

Deixe x, y ser conjuntos. x e y s0 equinumeiros se
e s6 se existe uma fungdo injetiva de x a y e existe
uma aplica¢@o injetiva de y a x.

Supongamosnos que X, y son conjuntos. x y y
son equinumerosos si y solo si existe una funcién
inyectiva de x a y y existe una funcidn inyectiva de
yax.

Lat x, y vara médngder. x och y r liktaliga om och
endast om det finns en injektiv avbildning fran x
till y och det finns en injektiv avbildning fréan y till
X.

4

For all finite sets X and all natural numbers 7, if
|X| = n, then & (X) is finite and |2 (X)| = 2".
Kaikille dérellisille joukoille X ja kaikille luonnol-
lisille luvuille n, jos |X| = n, niin &?(X) on #relli-
nenja |2 (X)| =2".

Pour tous les ensembles finis X et tous les en-
tiers naturels n, si |X| = n, alors Z(X) est fini
et | Z(X)|=2"

Fiir alle endlichen Mengen X und alle natiirlichen
Zahlen n, wenn |X| = n, dann ist &(X) endlich
und | Z(X)| =2".

Per tutti gli insiemi finiti X e tutti i numeri naturali
n, se |X| = n, allora Z(X) ¢ finito e |2 (X)| = 2".
Para todos os conjuntos finitos X e todos os
nimeros naturais n, se | X| = n, entdo & (X) é finito
e |2 (X)|=2"

Para todos los conjuntos finitos X y todos los
nimeros naturales 7, si |X| = n, entonces Z(X)
es finitoy |2 (X)| =2".

For alla d@ndliga mingder X och alla naturliga tal n,
om |X| = n, sa dr dndligt Z(X) och |Z(X)| =2".

5

Let s, be real numbers such that s < ¢. Then there
exists a real number r such that s < r < t.

Olkoot s,t reaalilukuja siten ettd s < ¢. Silloin on
olemassa reaaliluku r siten ettd s < r < t.

Soient s,¢ des nombres tel que s < ¢. Alors il existe
un nombre r tel que s < r < 1.

Seien s, reelle Zahlen derart dass s < ¢. Dann gibt
es eine reelle Zahl r derart dass s < r < ¢.

Siano numeri tale che s <t s,z. Allora esiste un
numero r tale che s < r <.

Deixe s, ser nimeros tal que s < ¢. Entdo existe
um niimero r tal que s < r < ¢.

Supongamosnos que s,¢ son nimeros tal que s < ¢.
Entonces existe un niimero r tal que s < r < ¢.
Lat s, vara tal sa att s < ¢. Da finns det ett tal r sa
atts < r <t.

6

Let M be a set. Then there exists no surjection from
M onto the powerset of M.

Olkoon M joukko. Silloin ei ole olemassa mitédin
surjektiota M:sta potenssijoukolle M:n.

Soit M un ensemble. Alors il n’existe aucune sur-
jection de M sur I’ensemble puissance de M.

Sei M eine Menge. Dann gibt es keine Surjektion
aus M auf die Potenzmenge M.

Sia un insieme M. Allora non esiste nessuna
suriezione da M sull’insieme delle parti di M.
Deixe M ser um conjunto. Entdo nio existe nen-
huma sobrejeccdo de M sobre o conjunto de potén-
ciade M.

Supongamosnos que M es un conjunto. Entonces
no existe ninguna sobreyeccién de M sobre el con-
junto potencia de M.

Lat M vara en méangd. Da finns det ingen surjektion
fran M pa potensmingden av M.

7
Yo<icn®’ = 1= for all natural numbers n.
Yo<icn®' = =% kaikille luonnollisille luvuille n.

):OSK,,xi = =, pour tous les entiers naturels n.

Yo< jen X = 1:2: fiir alle natiirlichen Zahlen n.
Yo<icn® = 1= per tutti i numeri naturali n.
ZO§i<nxi = 11—3: para todos os niimeros naturais .
Yo<i<n X = 1{_’22 * para todos los niimeros naturales
n.
20§i<nxi = 117_2" for alla naturliga tal n.
8

P (a+d-i)=n-(a+ 2Dy

P i(a+d-i)=n-(a+ ("+21>'d)..

P (a+d-i) =n-(a+ 20y

P (a+d-i)=n-(a+ 8Dy

" (a+d-i)y=n-(a+ ("+21)'d)..

P (a+d-i) =n- (a4 20Dy

P (a+d-i)=n-(a+ 80Dy

" (a+d-i)y=n-(a+ ("+21)'d)..
9

Let m,n be natural numbers such that m < n. Then
the greatest common divisor of m and n is the great-
est common divisor of n —m and m.

Olkoot m,n luonnollisia lukuja siten ettd m < n.
Silloin suurin yhteinen tekiji m:n ja n:n on suurin
yhteinen tekija n — m:n ja m:n.

Soient m, n des entiers naturels tel que m < n. Alors
le plus grand commun diviseur de m et de n est le
plus grand commun diviseur de n — m et de m.
Seien m,n natiirliche Zahlen derart dass m < n.
Dann ist der groBte gemeinsame Teiler m und » der
grofite gemeinsame Teiler n — m und m.

Siano numeri naturali tale che m < n m,n. Allora
il massimo comun divisore di m e n & il massimo
comun divisore di n —m e m.

Deixe m,n ser nimeros naturais tal que m < n. En-
tdo 0 maximo divisor comum de m e n € 0 maximo
divisor comum de n —m e m.

Supongamosnos que 1, n son nimeros naturales tal
que m < n. Entonces el mdximo comun divisor de
my n es el maximo comun divisor de n —m 'y m.
Lat m,n vara naturliga tal sa att m < n. Da ér den
grofita gemeinsama Teilern av n —m och m den
grofita gemeinsama Teilern av m och n.

10

Assume ACNandOcAandforallneA,n+1¢€
A. ThenA =N.

Oleta, ettdi A C N ja 0 € A ja kaikelle n € A:lle,
n+1€A. Silloin A =N.

Supposons que A C N et € A et pour toutn € A,
n+1€A. AlorsA =N.

Wir nehmen an, dass A C N und 0 € A und fiir alle
neA,n+1€A. DannA =N.

Supponiamo che A C N e 0 € A e per tutto n € A,
n+1€A. AlloraA =N.

Admitemos que A C Ne O € Aeparatodon €A,
n+1€A. Entio A =N.

Supongamosnos que A C Ny 0 € A y para todo
ncA,n+1¢€A. Entonces A =N.

Vi antar att A C N och 0 € A och for allt n € A,
n+1cA. . DaA=N.

