
Evaluating Sign Language Representation Learning with Large Language
Models

Fredrik Malmberg
fmalmb@kth.se

Anna Klezovich
annkle@kth.se

Division of Speech, Music and Hearing, KTH, Sweden

Jonas Beskow
beskow@kth.se

Abstract

This study explores integrating sign language
representation learning with large language
models (LLMs) in natural language processing
(NLP). Using a Vector Quantized Variational
Autoencoder (VQ-VAE) trained on Swedish
Sign Language (SSL) 2D keypoints, it exam-
ines the effectiveness of the learnt motion code-
book for SSL recognition tasks and whether
the performance of an LLM, trained on this
codebook to generate hand shape descriptions,
can be a tool to guide the development of more
powerful models for learning motion represen-
tations from sign language data.

1 Introduction

1.1 Background

Recent advancements in representation learning,
such as VQ-VAEs (van den Oord et al., 2018), have
shown promise in capturing the complexities of
sign language gestures (Xie et al., 2022). LLMs,
on the other hand, have revolutionized text-based
natural language understanding. This study aims
to explore the combination of these two fields by
integrating sign language representation learning
with LLMs.

1.2 Problem Statement

A key challenge in sign language processing is the
effective representation of intricate movements that
capture linguistic differences. VQ-VAEs are typi-
cally trained to reconstruct the input data but evalu-
ating the result based on reconstruction loss poses
several issues: it may not directly correlate with the
usefulness of the learned motion codes, more pow-
erful models may achieve lower reconstruction er-
rors without necessarily producing better represen-
tations, and it restricts the exploration of different
loss functions. Furthermore, qualitative analysis of
VQ-VAE outputs is both time-consuming and tends
to focus on the decoder’s performance, which is not

directly relevant to the goal of creating effective
motion representations. This project aims to evalu-
ate the usefulness of motion codes generated by a
VQ-VAE trained on Swedish Sign Language (SSL)
by employing LLMs for quantitative analysis.

2 Methodology

2.1 VQ-VAE for SSL Representation

A VQ-VAE is well-suited for compressing sequen-
tial data, such as sign language utterances, into a
discrete codebook, which can later be used in down-
stream tasks like the language model integration.

Using an architecture based on (Malmberg et al.,
2024) and inspired by (Jiang et al., 2023), we train
a 2D sign motion tokenizer. The model consists of
an encoder E and decoder D, with a discrete latent
space for structured motion representation. The
encoder E , based on 1D convolutions, processes
sequences of 2D sign keypoints (length M ) into
latent vectors ẑ1:L = E(m1:M ), downsampling the
sequence by a factor of l to produce a sequence
of motion codes of length L = M/l. These latent
vectors are quantized into a codebook Z = {zi}Ki=1

with K learnable embeddings of dimension d. The
decoder D reconstructs the original sequence using
these embeddings.

Figure 1: The VQ-VAE consists of an encoder that
takes sequences of poses as inputs, a codebook that
captures the motion codes and a decoder that outputs
reconstructed sequences.

Optimization uses reconstruction loss Lr and
commitment loss Lc to stabilize embeddings. We
also apply exponential moving average (EMA)
(Razavi et al., 2019) for improved embedding qual-

1



ity instead of the embedding loss (Le). To prevent
codebook collapse we use codebook resets to reini-
tialize unused codes as in Jukebox (Dhariwal et al.,
2020) and HVQ-VAE (Williams et al., 2020).

2.1.1 Dataset and Preprocessing
This study utilizes individual signs from the
Swedish Sign Language (STS) Dictionary (Sven-
skt teckenspråkslexikon, 2024), which comprises
21,000 entries. Each entry features a video of the
sign, the gloss, a shape description, variants, and
example sentences.

DWPose (Yang et al., 2023) was used to extract
2D pose keypoints from video frames and focused
on 56 keypoints related to the upper body, arms,
and hands (see Figure 1). The keypoints were con-
verted to relative locations given parent joint and
normalized using mean and standard deviation of
the training set. For preprocessing the video data,
we center the sequence of poses on the keypoint
connecting the body to the neck in the first frame,
then scale the pose based on the shoulder width.

Instead of using glosses we use shape de-
scriptions as targets for the LLM. The rationale
behind this is that the shape description contains
information related to the motions of the sign
but also that using glosses would lead to having
unique instances in the dataset and very limited
overlap in labels, between training and test data.
As the shape description for the selected dataset
is only available in Swedish the text strings were
translated to English using the Google AJAX
Language API.

Example of translated shape description:

Clasped hands, forward and facing each
other, exchange places with each other
maintaining contact on top of each other.

The shape descriptions contains description of
movement, position and orientation of hands, refer-
ences to different parts of the body, handshapes and
finger positions and different types of interactions
between the hands, or hands and the body. The
dataset was divided into training, validation, and
test sets with an 80/10/10 split for the VQ-VAE and
the language model.

2.1.2 VQ-VAE training
To evaluate the usability of learnt codebooks with a
language model, we trained a number of VQ-VAE
models using the architecture described in Section

2.1.1, each with a different setup in terms of loss
function, codebook size K, embedding dimension
d and number of convolutional layers in E and D.

Following Jiang et al., 2023 we defined a base
VQ-VAE model with the following parameters:

Parameter Value
Codebook size, K 512
Embedding dim, d 512
E and D depth 3
Loss Euclidean

Table 1: Base VQ-VAE Model Parameters

2.2 Large Language Model Integration
As in Jiang et al. 2023, we used T5 (Raffel et al.,
2023) (Text-To-Text Transfer Transformer) as the
base model. T5 is a versatile sequence-to-sequence
model pre-trained on a diverse range of text tasks,
where both input and output are treated as text
sequences. It leverages the transformer architecture
(Vaswani et al., 2017), which uses self-attention
mechanisms to handle dependencies in data.

2.2.1 Adding Motion Tokens and Embeddings
Since T5 was originally trained only on text data,
we extended its tokenizer to include motion tokens
representing the VQ-VAE codebook, as well as
start and stop motion tokens. These tokens were
added to the embedding layer. To maintain the in-
tegrity of the pre-trained text embeddings, we froze
the original embeddings during training, which pre-
vents catastrophic forgetting. The newly added
motion embeddings and the rest of the model’s
layers were fine-tuned to learn the new task.

Figure 2: The learnt motion codes for each sign are used
as input to the language model and trained against the
corresponding shape descriptions for that sign.

2.2.2 LLM Fine-tuning
The language model was trained in a supervised
manner where a tokenized motion sequence for
a sign served as input and the corresponding tok-
enized shape description was the target. The train-
ing was conducted with a batch size of 8, over 10

2



epochs, using a learning rate of 2 × 10−4. We
employed cross-entropy loss to guide the training
process .

2.3 Evaluation Metrics

The performance of the language model was eval-
uated on test data using Rouge score (Lin, 2004),
BERTScore (Zhang et al., 2020) alongside the test
set loss to provide a comprehensive evaluation of
the model’s performance, covering both literal over-
lap and semantic accuracy, as well as the model’s
prediction accuracy.

Rouge Score: Rouge (Recall-Oriented Under-
study for Gisting Evaluation) is a set of metrics
used to evaluate the quality of text summaries by
comparing them with reference summaries. We
will use Rouge-1 that focuses on unigram (single
word) overlap.

BERTScore: BERTScore evaluates text genera-
tion quality using contextual embeddings from the
BERT model. Unlike Rouge, which relies on exact
n-gram matches, BERTScore uses cosine similarity
between BERT embeddings of the generated and
reference text, capturing semantic similarity even
when different words or phrases are used.

Test Set Loss: For the T5 model, the test set loss
is calculated using cross-entropy loss, which mea-
sures the difference between the predicted proba-
bility distribution and the true distribution over the
vocabulary.

3 Results

3.1 Comparison with a Naive Baseline

To evaluate the effectiveness of the fine-tuned
LLMs we included a naive baseline based on ran-
dom codes where a code generator outputs a code
sequence of correct length for the given sample but
randomly selects codes from the codebook. This
gives the language model information regarding
sequence length but does not provide any infor-
mation on the actual motions performed. These
random motion codes were used to train an LLM in
a similar fashion as the other models and the results
will be referred to as Naive. The purpose of this
baseline is to understand how much of the final per-
formance simply comes from training a language
model to output reasonable descriptions compared
to providing it with the information encoded in the
learned motion codes coming from a VQ-VAE.

3.2 Results for different VQ-VAE setups
3.2.1 Loss Function
To evaluate the impact of the loss function used
to train the VQ-VAE we compare the base model
(Table 1) to a model using MSE loss as well as the
naive baseline (see Table 2). The VQ-VAE trained
with MSE lets the LLM achieve a better test loss
and F1 for BERTScore but the same is not true for
the F1 score for Rouge-1.

Loss
function Loss F1 (Rouge-1) F1(Bert)
MSE 0.4170 0.3683 0.8846
Euclidean 0.4201 0.3751 0.8826
Naive 0.4373 0.3611 0.8714

Table 2: Performance for different loss functions for the
VQ-VAE training sorted by LLM Test Loss.

3.2.2 Codebook Size K

The impact of modifying the codebook is presented
in Table 3 and somewhat contrary to intuition it can
be seen that the performance of the LLM is not
strictly increasing with increasing codebook size.

K Loss F1 (Rouge-1) F1 (Bert)
1024 0.4097 0.3852 0.8849
2048 0.4146 0.3797 0.8845
512 0.4201 0.3751 0.8826
Naive 0.4373 0.3611 0.8714

Table 3: Performance for different codebook sizes
sorted by LLM Test Loss.

3.2.3 Depth of Encoder and Decoder
As can be seen in Table 4 the impact of the depth of
the encoder and decoder is ambiguous and a deeper
model does not necessarily produce better codes.

Depth Loss F1 (Rouge-1) F1 (Bert)
3 0.4201 0.3751 0.8826
2 0.4235 0.3717 0.8773
4 0.4360 0.3819 0.8754
Naive 0.4373 0.3611 0.8714

Table 4: Performance for different depth of the encoder
and decoder sorted by LLM Test Loss.

3.2.4 Embedding Dimension d

Decreasing the embedding dimension from the
base model’s 512 improves the learnt representa-
tions up to a point as can be seen in Table 5.

3



d Loss F1 (Rouge-1) F1 (Bert)
128 0.4049 0.3987 0.8905
64 0.4196 0.3689 0.8826
512 0.4201 0.3751 0.8826
256 0.4253 0.3834 0.8791
Naive 0.4373 0.3611 0.8714

Table 5: Performance for different embedding dimen-
sions for the codes sorted by LLM Test Loss.

4 Discussion

The selection of parameters for the VQ-VAE,
such as embedding dimension and codebook size,
clearly impacts the usefulness of the learnt repre-
sentations while changing loss function and modi-
fying the depth of the VQ-VAE did not lead to an
improvement in all the metrics. It might be rea-
sonable to believe that a more powerful encoder
and decoder should learn more useful representa-
tions. However, the depth of the network impacts
the length of the motion code sequence. For a
deeper architecture the compression increases by
a factor of two which means a deeper architecture
needs to capture twice as much information per
token in which case the codebook, rather than the
architecture, likely becomes the bottleneck. As for
the bigger codebook size that increased our scores,
it shows that using Lookup Free Quantization (Yu
et al., 2024), that instead of vectors uses scalars,
while ensuring bigger codebook size on the same
resources, could work on our data after grid search-
ing for the optimal hyperparameters.
Interestingly the shallow architecture reached a
much lower reconstruction loss on the test set for
the VQ-VAE while also creating subjectively more
responsive reconstruction videos. Regardless of
these results, the learnt motion codes for this model
performed worse when used with the LLM (see
Table 4). As the improvement over the naive base-
line was limited we retrained the best performing
model and the random baseline 10 times to measure
changes in performance. As can be seen in Figure
3 the difference between the models is meaningful
for BERTScore and test loss but not for Rouge-1.

We were also interested in understanding which
types of shape descriptions where easier or harder
for the model to identify and tested the model’s
performance relating to precision and recall for
bigrams in the test dataset. However, as can be
seen in Figure 4 there is no clear pattern to which
bigram types the model accurately captured.

Figure 3: The best performing model (Embedding di-
mension 128) compared to the naive baseline, showing
mean and standard deviation over 10 VQ-VAE and LLM
training runs.

Figure 4: Precision Vs. Recall on the test data for the
100 most common bigrams in the training data. Size by
occurrence and color according to type.

5 Conclusion

The comparison between the language models fine-
tuned on learned motion codes and the naive base-
line indicates that the learned motion codes do con-
vey useful information related to the textual shape
descriptions of the signs, but more importantly that
the degree of usefulness of these codes can be used
to guide the design of the representation learning
setup. Even though the performance of the mod-
els trained on learnt codes is only slightly better
than that of the one trained on random codes, it sig-
nals that using this way of benchmarking motion
codes, and thereby the learnt representations, could
be a valuable addition to the toolbox when trying
to create the best possible representation learning
setup.

This study evaluated VQ-VAE models by vary-
ing the setup along one parameter at the time. Fu-
ture research could benefit from combining these re-
sults and mix varying decoder architectures, quan-
tizers, codebook sizes, and codebook embedding
dimensions to find even better setups for repre-
sentation learning while continuously guiding the
improvement using the proposed LLM evaluation.
However, it should be noted that with the current
setup, several training runs per model are needed to
ensure a proper measure of its performance which
somewhat limits the usefulness of the method.

4



References
Prafulla Dhariwal, Heewoo Jun, Christine Payne,

Jong Wook Kim, Alec Radford, and Ilya Sutskever.
2020. Jukebox: A generative model for music.
Preprint, arXiv:2005.00341.

Biao Jiang, Xin Chen, Wen Liu, Jingyi Yu, Gang Yu,
and Tao Chen. 2023. Motiongpt: Human motion as a
foreign language. Preprint, arXiv:2306.14795.

Chin-Yew Lin. 2004. ROUGE: A package for auto-
matic evaluation of summaries. In Text Summariza-
tion Branches Out, pages 74–81, Barcelona, Spain.
Association for Computational Linguistics.

Fredrik Malmberg, Anna Klezovich, Johanna Mesch,
and Jonas Beskow. 2024. Exploring latent sign lan-
guage representations with isolated signs, sentences
and in-the-wild data. In Proceedings of the LREC-
COLING 2024 11th Workshop on the Representation
and Processing of Sign Languages: Evaluation of
Sign Language Resources, pages 219–224.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2023. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. Preprint, arXiv:1910.10683.

Ali Razavi, Aaron van den Oord, and Oriol Vinyals.
2019. Generating diverse high-fidelity images with
vq-vae-2. Preprint, arXiv:1906.00446.

Svenskt teckenspråkslexikon. 2024. Swedish Sign Lan-
guage Dictionary online. Department of Linguistics,
Stockholm University. teckensprakslexikon.su.se.

Aaron van den Oord, Oriol Vinyals, and Koray
Kavukcuoglu. 2018. Neural discrete representation
learning. Preprint, arXiv:1711.00937.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, volume 30. Curran Associates, Inc.

Will Williams, Sam Ringer, Tom Ash, John Hughes,
David MacLeod, and Jamie Dougherty. 2020.
Hierarchical quantized autoencoders. Preprint,
arXiv:2002.08111.

Pan Xie, Qipeng Zhang, Zexian Li, Hao Tang, Yao Du,
and Xiaohui Hu. 2022. Vector quantized diffusion
model with codeunet for text-to-sign pose sequences
generation. arXiv preprint arXiv:2208.09141.

Zhendong Yang, Ailing Zeng, Chun Yuan, and Yu Li.
2023. Effective whole-body pose estimation with
two-stages distillation. In Proceedings of the
IEEE/CVF International Conference on Computer
Vision, pages 4210–4220.

Lijun Yu, José Lezama, Nitesh B. Gundavarapu, Luca
Versari, Kihyuk Sohn, David Minnen, Yong Cheng,

Vighnesh Birodkar, Agrim Gupta, Xiuye Gu, Alexan-
der G. Hauptmann, Boqing Gong, Ming-Hsuan Yang,
Irfan Essa, David A. Ross, and Lu Jiang. 2024. Lan-
guage model beats diffusion – tokenizer is key to
visual generation. Preprint, arXiv:2310.05737.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q.
Weinberger, and Yoav Artzi. 2020. Bertscore:
Evaluating text generation with bert. Preprint,
arXiv:1904.09675.

5

https://arxiv.org/abs/2005.00341
https://arxiv.org/abs/2306.14795
https://arxiv.org/abs/2306.14795
https://aclanthology.org/W04-1013
https://aclanthology.org/W04-1013
https://arxiv.org/abs/1910.10683
https://arxiv.org/abs/1910.10683
https://arxiv.org/abs/1910.10683
https://arxiv.org/abs/1906.00446
https://arxiv.org/abs/1906.00446
https://teckensprakslexikon.su.se
https://arxiv.org/abs/1711.00937
https://arxiv.org/abs/1711.00937
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://arxiv.org/abs/2002.08111
https://arxiv.org/abs/2310.05737
https://arxiv.org/abs/2310.05737
https://arxiv.org/abs/2310.05737
https://arxiv.org/abs/1904.09675
https://arxiv.org/abs/1904.09675

	Introduction
	Background
	Problem Statement

	Methodology
	VQ-VAE for SSL Representation
	Dataset and Preprocessing
	VQ-VAE training

	Large Language Model Integration
	Adding Motion Tokens and Embeddings
	LLM Fine-tuning

	Evaluation Metrics

	Results
	Comparison with a Naive Baseline
	Results for different VQ-VAE setups
	Loss Function
	Codebook Size K
	Depth of Encoder and Decoder
	Embedding Dimension d


	Discussion
	Conclusion

