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Abstract

Analysis of text corpora involves the use of
specialised corpus search tools, capable of han-
dling huge amounts of annotated text. The ex-
tent to which these tools apply optimisations to
reduce query execution times is as diverse as
the tools themselves. We argue that the develop-
ment of a corpus algebra, similar to relational
algebra in relational database systems, is a valu-
able foundation to improve corpus query opti-
misation. We demonstrate a query optimisation
approach based on algebraic transformations,
which vastly reduces query execution times.

1 Introduction

Text corpora and their analysis form an important
cornerstone of computational linguistics and natu-
ral language processing. As annotated and search-
able collections of text, spanning up to billions of
words, they provide a valuable basis of data for
researchers. However, the size of a corpus and the
complexity of its annotations also form one of the
difficulties in analysis. Corpora are analysed by
searching for individual tokens, token sequences
or structures matching some given criteria of in-
terest. The amount and distribution of matches in
conjunction with metadata like author and time of
creation of a text can lead to valuable insights for
researchers. Finding all matches, especially when
criteria describe a complex relationship of differ-
ent tokens and attributes, requires a considerable
amount of computational resources. With response
times for corpus queries in the order of minutes,

creating and refining queries quickly becomes a
cumbersome task.

1.1 Challenges of Query Execution
In order to highlight the challenges of executing
corpus queries efficiently, we want to provide a
small example. Consider the text in Figure 1, which
shows a single sentence from the BNC corpus
(BNC Consortium, 2007). Each token has been
annotated with its part of speech and the syntac-
tic relation it has with other words in the sentence.
The following query could be used to try and find
all subject or object noun phrases in a sentence:

[pos = DET|NUM|PRON] [pos = ADJ|NOUN]*
[deprel = .*(SU|O)BJ]

It matches a token whose part of speech is deter-
miner or number or pronoun, followed by a possi-
bly empty sequence (denoted by the *-operator) of
adjectives and nouns, followed by a token that acts
as a subject or object.

While this query is not particularly complex, it
is not trivial to execute it efficiently. Typical algo-
rithms and strategies used for text search, such as
suffix arrays (Manber and Myers, 1990), are diffi-
cult to apply as a corpus stores not only text, but
also annotations associated with it.

Instead, specialised corpus search tools are used
to access to the annotated data in a corpus. The
different query languages provided by these tools
are often only defined ad hoc by providing the
tool’s implementation as an interpreter. As a conse-
quence, it is not clear how different features might

Figure 1: Text annotated with part-of-speech and syntactic relations from the BNC corpus (BNC Consortium, 2007).
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interact, so it is difficult for tool authors to optimise
queries correctly, and users aiming to improve the
execution time of a query have to rely on man-
ual tuning using their knowledge of a tool’s inner
workings. Additionally, optimisation techniques
implemented by one tool can not easily be adopted
by other tools.

1.2 Motivation
A look at relational database systems provides a po-
tential approach to improve query execution times.
There, query execution engines rely on solid math-
ematical foundations to perform automated opti-
misations on queries. We argue that creating an
algebra for corpus queries enables similar optimi-
sation techniques when querying corpora, which
in turn speeds up execution of corpus queries and
reduces the resources required by corpus tools. Our
goal is to create a formalised corpus query language
based on a sound corpus algebra. In this paper, we
explain why we consider a corpus algebra a neces-
sary foundation for corpus tools and present first
results on optimised query execution using it.

2 Existing Technology

Existing query engines, languages and technolo-
gies use vastly different approaches to address the
requirements of their specific domains. This sec-
tion provides an overview of existing approaches
for processing queries in the context of corpora,
databases and text retrieval. In all cases, a query
describes a result set in terms of properties a user
is interested in. The means of finding that result
set are not specified. This leaves room for a query
engine to choose an efficient execution strategy.

2.1 Corpus Query Engines
The straightforward way of searching in a corpus
is to use the query as a filter while linearly iterating
through all text positions. This strategy works for
smaller corpora, but for large corpora with billions
of tokens, other strategies are required to answer
queries without long waiting times.

Existing corpus search engines have two main
approaches to making corpus search efficient: (1)
they use inverted indexes, which is a technique
mainly used in the field of information retrieval, or
(2) they convert the corpus into a database and con-
vert corpus queries into equivalent database queries
to retrieve the results.

Using inverted indexes: Text retrieval, the
branch of information retrieval that considers find-

ing relevant parts in free-text documents, exhibits
a similar goal to corpus searches. It appears there-
fore only natural that inverted indexes, which are
used to find locations of a query string within free-
text documents, are also used for corpus search by
e.g., Evert and Hardie (2011), Diewald and Mar-
garetha (2016), Meurer (2020), and Ljunglöf et al.
(2024). These engines compile a complex query
into one or more basic searches in statically com-
piled inverted indexes. Results from these searches
are then combined and further refined, as available
indexes might not be sufficiently specific to fully
answer a query on their own. Refinement of result
candidates is done by individually checking each
candidate against the query’s criteria. Depending
on the query, this refinement requires a consider-
able amount of execution time.

Using database engines: Another approach is
to convert the corpus, its annotation and further
information into a format processable by an exist-
ing database engine. Corpus queries have to be
compiled into queries for the chosen engine, which
is then responsible for accessing the data in an
efficient manner. Commonly advocated for this ap-
proach are relational database systems (e.g. Davies
(2005), Krause and Zeldes (2016), Kleiweg and
van Noord (2020) and Schaber et al. (2023)) or the
Apache Lucene search engine1 (e.g. Bingel and
Diewald (2015), Ghodke and Bird (2012) and Lu-
otolahti et al. (2017)). This approach can be quite
efficient, if the corpus is accessed and searched in
a way aligning with the used engine. For example,
a relational database storing consecutive n-grams
will be efficient when querying a fixed number of
tokens. Queries diverging from this structure, how-
ever, will perform worse.

2.2 Relational Algebra

The core idea of database engines is to allow us-
age of a declarative query language to describe
the properties of a result set without specifying
how results should be fetched. This enables the
database engine to decide how a query is executed,
by selecting an efficient execution plan. Search and
selection of execution plans for a query is guided by
a mathematical foundation, a relational algebra, as
pioneered by IBM’s System R (Griffiths Selinger
et al., 1979). It describes query operations and
defines valid transformations and simplifications.
An execution plan is created by selecting one of

1https://lucene.apache.org/
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the possible query transformations and choosing
concrete ways of executing the abstract operations
described by relational algebra. This process is
guided by a cost model, that incorporates informa-
tion such as available indexes or size and structure
of a table to estimate execution characteristics.

3 Relevance of a Corpus Algebra

We now use the example presented in Figure 1 to
demonstrate the usefulness of an algebraic foun-
dation for corpus queries. We do this by recalling
the example query and providing different strate-
gies an optimising query engine might use to find
a well-performing execution plan. First, let us split
the example query up into its three components:

A = [pos = DET|NUM|PRON]

B = [pos = ADJ|NOUN]

C = [deprel = .*(SU|O)BJ]

The original query can be written as Q = AB∗C.
Each component describes one token out of a

token sequence. In an algebraic framework, tokens
and results from (sub-)queries can be represented as
a set of corpus positions. Sequencing is then mod-
elled using set intersection and disjunction using
set union. This enables reasoning about a query’s
properties in abstract terms.

3.1 Query Planning
One advantage of abstract reasoning is that the
query engine has freedom to choose and optimise
execution details. The corpus algebra merely de-
fines the properties and nature of the supported
operations. In our example, set union and intersec-
tion are associative and commutative. This means
that the query itself does not specify the order in
which results for subqueries are fetched and com-
bined. Instead, the query engine is free to select an
execution plan, determining execution order and
implementation for all operations in the query.

There are thus many ways to execute a query. To
choose the best one, the tool author creates a cost
function estimating the execution characteristics of
a plan. The cost function encodes knowledge about
available implementations for set operations, index
lookups and how results are refined. Even the pre-
dicted size of results can influence this estimation.

For example, suppose that only two execution
plans for our example query existed: Either results
for A are fetched from an index and refined, or
results for C are fetched from another index and

refined. Fetching from an index is very fast, so that
the execution time is dominated by the number of
results to be refined. A cost function modelling this
behavior could use the number of results fetched
from an index as the cost of the execution plan.
When querying the BNC, around 20.5 million re-
sults are fetched for A compared to 24.5 million
results for C. Consequently, the first execution plan
is better. To handle complex query plans, practical
cost functions must be much more complex.

3.2 Query Optimisation Using Algebraic
Transformations

Another advantage of abstract reasoning is the abil-
ity to find alternative queries describing the same
result set. Combined with query planning, a query
engine is able to choose from a multitude of execu-
tion plans. Algebraic laws provide the foundation
to formulate valid transformations of queries.

In our example, the law B∗ = ε |BB∗ can be
applied. Subsequently reordering the query allows
transformation into the following forms:

Q = AB∗C (1)

= A (ε |BB∗)C (2)

= AC |ABB∗C (3)

There is an important difference in how these
queries can be executed. To execute query 1, it
is difficult to use more than one index (e.g. we can
fetch the results of A and filter them to see which
match the query). However, to execute 3, we can
fetch the results of A, B and C, and use set opera-
tions to compute AB ∪ AC. This yields fewer
result candidates for individual filtering, which
speeds up execution.

Alternatively, the related law ε |B∗B could be
applied, which leads to transformations (4 – 6).
Instead of using the result candidates from A and
B for refinement, the query engine can make use of
B and C instead. Which variant would be preferred
depends on the cost function used.

Q = AB∗C (4)

= A (ε |B∗B)C (5)

= AC |AB∗BC (6)

In general, applying transformations can both
simplify a query and, as in this case, make it more
complicated. Making a query more complicated
can be worthwhile if, as in this case, the result-
ing operations are faster to execute – replacing an
expensive filter with a cheaper intersection.



3.3 Synergies with other Techniques
The ability to transform queries and find different
execution plans for abstract operations also works
well in conjunction with other techniques aiming
to improve query execution times. By being able to
select an execution plan for an abstract query, new
optimisation techniques can be added to the planner
at any time and are selected whenever applicable.
Additionally, queries can be transformed to make
more techniques applicable.

As an example, consider binary indexes as pre-
sented in Ljunglöf et al. (2024). The transformed
queries shown in equations (3) and (6) enable use
of a special index to fetch results for a pair of to-
kens. This way, the entire sub-queries AC as well
as AB and BC respectively can be fetched using
a single lookup, reducing the number of required
operations and further speeding up execution times.

4 Preliminary Results

We have implemented a prototype corpus tool2

that we described in Ljunglöf et al. (2024). It ac-
cepts queries in a subset of the syntax used by Cor-
pus Workbench (CWB, Evert and Hardie, 2011).
Currently supported are queries specifying a fixed-
length sequence of tokens. Further, our tool sup-
ports disjunctions and on the level of single tokens,
regular expressions and Boolean conditions. Ex-
amples of supported queries can be found in the
appendix. Our prototype outperforms CWB on
most of the supported queries.

The improved performance results from using
multiple indexes per query and optimising the order
of operations. Our base assumptions are that index
lookups are fast and that performed set operations
get faster with smaller operands. The query planner
uses these assumptions to execute index lookups
for all subqueries with appropriate indexes present
and subsequently perform set intersections starting
from the smallest sets. It uses algebraic reasoning
in two essential ways: firstly, to skip redundant
intersections (e.g. intersecting with a unary index
A when the binary index AB has already been
used), and secondly, to tell if the result set can
contain false positives. When available indexes do
not cover the full query we need to filter results for
these false positives afterwards.

As a consequence of this optimising query plan-
ning, the execution time for a query depends on
the query’s size and the smallest number of results

2Available from https://github.com/heatherleaf/korpsearch

for any of its subqueries. This contrasts other tools,
such as CWB, where the number of results for the
first subquery defines most of the execution time in
addition to the overall query size. In practice this
means that many queries will finish almost instan-
taneously within 100 milliseconds, while the same
query might take multiple seconds for CWB to ex-
ecute. This effect is clearly visible if the first token
in the queried sequence is specified in rather broad
terms (such as determiner or noun). The appendix
contains an informal evaluation of some queries on
CWB compared to our prototype.

The key improvement of an automatically opti-
mising query system is, that a user is free to specify
queries whichever way they see fit without trade-
offs in terms of performance. The promising results
of our prototype in combination with initial appli-
cations of a formal framework, lead us to believe
that a corpus algebra is a viable and promising
foundation for query optimisation.

5 Planned Contributions

Our goal is to support a much more complex query
language, which in turn requires more expressive
mathematical foundations and a richer set of trans-
formation laws. To accomplish this, the following
four tasks are essential next steps and goals of our
research project:

Query language: Extending the query language
to enable more expressive queries requires the ex-
tension of the mathematical framework. It is impor-
tant to provide solid mathematical underpinnings
for our query language to formally describe the
execution behavior of queries.

Corpus algebra: An adequate formal frame-
work is needed to describe the behavior of corpus
queries and execution plans. For this purpose, we
aim to develop a corpus algebra specialised for the
requirements of corpus queries.

Query transformations: Using the corpus alge-
bra, we can describe valid query transformations
based on algebraic identities. These transforma-
tions do not change the result set of a query.

Query engine: Query language, algebra and
transformations provide the foundation to develop
a query engine. This engine is capable of auto-
matically optimising, evaluating and selecting fast
execution plans for provided queries.

https://github.com/heatherleaf/korpsearch
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A Informal evaluation

In this appendix we give an informal evaluation of Corpus Workbench (CWB) compared to our prototype
tool Korpsearch. We show the execution times of some example queries on two different annotated
corpora, the British National Corpus (see table 1), and Swedish Wikipedia (see table 2). Also provided
are the number of matches each query produces. The measured execution time includes the total time
execution time required by the search tool, including the program startup time. Measurements have been
repeated 100 times with the average of all measurements presented below.

All tests were run on the same machine with a 4.4 GHz 12th generation Intel i5-CPU, 16 GiB of
working memory and a Phison P0221 NVMe SSD with 2 TiB of storage capacity. The system runs Linux
on version 6.11.5. Tests used CWB on version 3.5.0 compiled using version 14.2.1 of the GCC compiler.
Our prototype tool Korpsearch is run as a Python program using Python version 3.12.7.

runtime [s]
Query N:o matches CWB Korpsearch
[word="duck"] [pos="VERB"] 51 0.006 0.05
[word="duck" & pos!="NOUN"] 127 0.006 0.06
[lemma="the"] [pos="ADJ"] [word="duck"] 26 8.5 0.05
[lemma="the"] [pos="ADJ"] [word="d.*"] 53 k 8.6 0.6
[pos="NOUN"] 20.0 M 1.1 0.05
[pos="NOUN"] [pos="NOUN"] 2.0 M 3.9 0.05
[pos="NOUN"] [pos="NOUN"] [pos="NOUN"] 195 k 4.0 0.06

Table 1: Example queries on British National Corpus (BNC Consortium, 2007)

runtime [s]
Query N:o matches CWB Korpsearch
[word="anka"] 225 0.002 0.05
[word="anka"] [pos="VB"] 17 0.004 0.05
[pos="JJ"] [word="ankan"] 5 14.5 0.05
[pos="JJ"] [word="anka.*"] 191 14.9 0.06
[pos="NN"] 38.5 M 2.1 0.05
[pos="NN"] [pos="NN"] 2.5 M 7.0 0.05
[pos="NN"] [pos="NN"] [pos="NN"] 240 k 7.2 0.06

Table 2: Example queries on Swedish Wikipedia (Språkbanken Text, 2024)
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