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Abstract

Speaking about the same scene from different
points of view is a natural part of human di-
alogue. The point of view being used often
shifts inside of the same conversation and is
coordinated by participants as a part of their
common ground. However, current AI systems
are generally trained on a single perspective or
multiple random perspectives and are incapable
of such coordinations. In this paper we propose
a novel artificial dataset that we are developing
as a part of our ongoing work with the purpose
of evaluating the current state of the art on their
ability to learn to recognise and generate spa-
tial descriptions where the speaker and listener
have different points of view.

1 Introduction

When humans communicate with each other we
have to consider whose Point of View (POV) or
Frame of Reference (FoR) a description is given
from (Levinson, 2003). For example, “The tiger
is hiding in the bushes to the right of the child” in
this example there are at least three different POVs
to consider: the speaker’s, the listener’s, and the
child’s. The listener would need to infer which
POV to use in order to complete its intended task,
e.g. aiming a tranquilizer at the correct bush. Fur-
thermore, if a listener later becomes a speaker in
the same conversational and situational context,
what perspective would they take in their utterance?
Current state of the art models struggle with spa-
tial relations on their own (Kelleher and Dobnik,
2017; Liu et al., 2023), and very few consider FoR
explicitly (some notable exceptions include Lee
et al. (2022); Hua et al. (2018); Steels and Loet-
zsch (2006)). However, Dobnik (2009) found that
even when participants are asked to use a fixed
FoR they would shift FoR. Dobnik et al. (2020)
further study this phenomanon in human dialogues
and find that people will shift FoR throughout ex-
tended dialogues, often without explicitly marking

Figure 1: The structure of the language game. The
Sender selects a view, observes an image and produces a
message. The receiver sees two images and the message
and must produce some output, in this case selecting
the correct image. the goal of the game is for agents to
coordinate on language the messages of which commu-
nicate the point of view.

the shift.
In order for robots and other AI systems to com-

municate successfully with humans then need the
capability to generate and interpret referring ex-
pressions from different FoRs and in continuous
conversational and situational contexts. In this pa-
per we propose an artificial dataset and task which
will diagnose systems’ ability to consider FoR in
spatial descriptions and test conditons under which
FoR can be learned by them. We describe work in
progress, which means we have not completed the
development of this data nor any experiments.

2 Dataset and task

2.1 Task

In the signaling game a speaker s sees a set of infor-
mation is, e.g. an image. The speaker must convey
a message m to a listener l who in turn has its own
information il. The listener must then produce an
output y based on m and il. The interaction is
evaluated on whether y matches an expected target
output yt. The goal of the game is to get the agents
to converge on a language, the messages of which
convey the point of view. The language is com-



pletely made up by the agents, the speaker initially
selecting random tokens and the listener selecting
output randomly, but through feedback they both
converge on a shared understanding. For exam-
ple, Chaabouni et al. (2021) used this formalism to
study how artificial agents would learn to commu-
nicate about colours. In their experiments is was
a single colour, represented as its RGB value. il
was two colours, the same colour as the sender saw
plus an additional distractor colour. The learner
produces a 1-hot vector, the output y, where the
target, yt would be the same colour that the sender
saw. The message m would have to convey which
colour the sender saw, and be specific enough such
that the listener would be able to select it when a
distractor was present. The authors then used this
to observe in what way the agents had “chosen” to
conceptualise the colour space.

Havrylov and Titov (2017) used a similar set up
to Chaabouni et al. (2021) only they used images
instead of colours. In their experiment the speaker
is shown the target image imgt and the listener is
shown a set of images imgs where imgt ∈ imgs.
Again, the listener must select which of the images
is the correct one. Havrylov and Titov (2017) found
messages which correlated with e.g. images con-
taining pizza. Thus the messages seemed to contain
information about the contents of the images.

We wish to investigate whether we can influence
what type of information the agents communicate
through the language that they are constantly adapt-
ing by manipulating the images that we show to
them, by carefully picking which images we show
and which distractors. We will investigate a cur-
riculum of different scenarios with increasing com-
plexity, with the goal of having the models learn
language referring to visual features in each one.
We capture this curriculum in Figure 3. Each exper-
iment will use the set-up with the sender seeing one
image (and potentially some additional informa-
tion) and the listener seeing two (or more) images
and having to select among them.

The first row is simply a replication of the colour
experiment in Chaabouni et al. (2021), so the agent
needs to learn to communicate about colour. In
the second row we start introducing images which
we generate using Blender which are of geometric
shapes with different colours and size (using the
same method of generation as the CLEVR dataset
(Johnson et al., 2016)). The first experiment is sim-
ply one where we vary a single attribute between
objects, e.g. the colour or the shape. E.g. the target

image may contain a big blue sphere while a dis-
tractor image contains a big blue cube. The agents
would then need to learn how to communicate the
chosen attribute. We can increase the complexity
of this task by varying more attributes and adding
more distractors. E.g. having the target be a big
green cube with distractors: small green cylinder
and big blue cylinder. Here the agents should learn
to describe the objects in more detail.

In the next step we add in spatial relationships.
Here the target could be a green square to the left
of a blue cylinder. The listener would be shown
distractors with objects that share the same visual
attributes but a different spatial relation between
them, e.g. a green square to the right of a blue
cylinder. Thus it would not be sufficient to just
describe one of the objects but the relation between
them would have to be described as well.

In the final step we keep the same type of images
in the previous one but now we show the listener
the scene from a different point of view. We capture
images of the scene from four different points of
view each one with the camera rotated 90°. Figure
5 shows a scene which has been captured in this
way. Figure 2 shows an example of what the sender
and receiver may see. There are several versions
of this experiment that we could try which would
require different strategies from the agents in order
to communicate about the images. The first would
be to always show the listener the images rotated
by a fixed amount, e.g. always show them the 180°
images. In this case the agents would not have to
learn to explicitly communicate about the point of
view shift. Instead, assuming the sender learns a
word for “left” the receiver would simply have to
learn that this means “right” (in our semantics of
these words). This is an intuition of how this would
work if humans were to learn this task, however,
it would be interesting to see if the agents could
learn the same thing. In fact, one way to investigate
this could be to use the same sender as in the previ-
ous experiment (spatial but unrotated images) but
train a new listener which sees the rotated images.
However, more interesting is to see if the agents
can learn to communicate in a situation where the
points of views shift. To experiment with this we
will show the listener different points of view each
time. We will select one of the four points of view
in each interaction. Now, it would be impossible
for the speaker and listener to coordinate on which
image to choose if neither of the agents knew their
relative points of view. As such we will encode this



Figure 2: Top:sender view, bottom: listener view. The
target image for the listener is the left one, which is a
180° rotation of the top image.

Figure 3: A curriculum of tasks of increasing difficulty.

information as a simple 1-hot vector where each po-
sition represents one of the four rotations. We can
then provide this information either to the sender,
the receiver or both. In principle giving it to the
sender would mean the sender would have to adjust
its utterance to accommodate the speakers point
of view by adjusting the referring expression. If
the listener receives the pov encoding the speaker
would not know and would therefore simply de-
scribe it from its point of view while the listener
would have to make the adjustment to its point of
view. Finally, if both receive the information the
agents would need to learn to coordinate on which
method to use (or potentially to explicitly have a
word in their shared language for indicating which
pov is being used). We would investigate which
strategy the agents adopt in our analysis.

Our goal is to investigate model’s ability to learn
to communicate about spatial relationships when
the agents are viewing the scene from different
points of view. Our interest lies in the dual tasks
of producing and interpreting spatial descriptions.
Our experimentation will begin using the paradigm

of signaling games (Lewis, 1969; Kharitonov et al.,
2019).

2.2 Data

We opt for artificial scenes so that we can control
precisely the contextual attributes of the interaction
environment and to allow us to capture images of
the scene from different directions. The scenes con-
sist of geometric objects placed on a white tabletop
with a particular light source. Images are generated
in pairs (or n-tuples) where one image is the target
and the other are distracting images. In the current
set-up we use the same variation in visual features
as is present in the CLEVR dataset (Johnson et al.,
2016), namely: colour, shape, size, and material.
If two objects share the same visual features then
they are identical in the scene except for the ef-
fects of lighting and object rotation. A scene is
generated in order to fulfill certain criteria, as de-
scribed above. The scenes, which are generated
using Blender and a modification of the code used
to generate CLEVR, will be captured from four
different directions, each 90 degrees rotated from
one another. Figure 5 shows an example of these
four views.

3 Method

We are implementing this in the EGG framework
(Kharitonov et al., 2019) which implements the
signaling game framework. Figure 1 shows the
overall shape of the interaction. The agents are
neural models implemented in PyTorch. Figure 4
shows an example of what the structure of those
models. The model would consist of a vision en-
coder which takes the image and extracts a feature
vector, this would then be passed to a language
generation model, e.g. an LSTM. The language
generator generates a string of tokens, the size of
the vocabulary and the maximum length of the
messages are hyper-parameters that can be varied
and experimented with. The receiver is a decoder
model which uses some kind of decoder to decode
the message as well as image encoders to encode
the images it is given. These can then be fed into
some kind of decision network, e.g. a Multi-Layer
Perceptron (MLP) (i.e. a fully connected neural
network) with a softmax output layer. We then eval-
uate this using cross entropy and back-propagate
the error through the listener and then, since the
message is discreet, either use reinforcement learn-
ing or Gumbel Softmax to propagate the error to



Figure 4: The internal structure of the agents.

the sender.

4 Analysis

The success of the agents will be evaluated on the
listener’s ability to select the correct image. We
will measure this accuracy over the training steps
which will give us a curve showing the speed of
convergence of the agents’ learning. Further we
will keep a held out validation set. This is often
not done in recent trials of this nature. We think
it is important to do this since it will show that
the agents have learned a communication schema
which is generalisable to unseen images and have
not just over-fit to the training data and thus learned
to memorise the data. We will see our experiments
on a task successful if the agents converge on a
shared language which has high accuracy on the
validation set.

In addition to this we will perform several eval-
uations of the languages that the agents learn to
try to understand what kinds of strategies the mod-
els have utilised to communicate about the images.
The first method we will use is to measure the like-
lihood of a particular language token co-occuring
with images containing particular visual attributes.
E.g. P (t1|blue) being the probability that token 1
occurs when a blue object is present in the scene.
We will investigate several n-gram lengths to see if
the tokens are entangled or if each token represents
a single concept.

Another way we will analyse the generalisabil-
ity of the language learned is to perform a type
of visual ablations. Our expectation, for example,
would be that if the scene contains a blue cylinder
left of a green square than the message the sender
generates to describe that would be able to be used
by the listener to recognise a scene with the same
properties but which is not the exact same image.
We will perform this test by having the sender gen-
erate a message for one image and then insert a

Figure 5: Four views of the same scene.

different target image in the listeners set of images.
If this test fails we can also add this type of scenario
into the training data.

We will try to determine in which way the
speaker and listener solve the problem of the per-
spective shift by investigating, for example, if there
exists a token which co-occurs with a specific lis-
tener perspective (indicating that the telling the
listener which point of view its describing it from).

5 Related Work

Spatial Relations have been studied on without FoR
e.g. Cheng et al. (2024); Kelleher and Dobnik
(2017); Fu et al. (2024); Liu et al. (2023); Kuhnle
and Copestake (2017); Kordjamshidi et al. (2011).
Liu et al. (2023) allow annotators to use camera
or intrinsic FoR but do not model them explicitly.
Lee et al. (2022) model intrinsic FoR, e.g. “plane
left of elephant” from the elephants FoR. This is
complementary to our data which poses different
challenges to models. Steels and Loetzsch (2006)
have robots view events from different perspectives
and perform a language game, creating a similar
scenario to ours, however, their model architectures
are quite out of date so we are due a new look at
the problem. Fu et al. (2024) propose several vi-
sual benchmarks for visual language models, one
is multi-view reasoning, however the task is simply
to identify how the camera has moved (left or right)
with no spatial reference task. Dobnik et al. (2020)
present a set of dialogues where people speak about
objects on a table that they see from different points
of view. The work highlights the need for AI sys-
tems to communicate about spatial relations from
shifting POVs. Our proposed dataset would pro-
vide a testbed for that task.
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